
Diplomarbeit

An Open Service Runtime Environment Supporting

Autonomic Communication Principles

Lehrstuhl für praktische Informatik. Fachbereich Informatik. Technische
Universität Dortmund

in Kooperation mit

Fraunhofer-Institut für Offene Kommunikationssysteme. FOKUS

vorgelegt von Ilya Gorodnyanskiy

1. Gutachter: Prof. Dr. Peter Buchholz
2. Gutachter: Dr.-Ing. Stephan Steglich

Betreuer beim FOKUS: David Linner

September 12, 2008

Eklärung

Hiermit versichere ich, dass ich meine Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht
habe.

Essen, den 12. September 2008 Ilya Gorodnyanskiy

2

Table of Contents

Tabel of Contents . 4
Table of Figures . 5
Table of Tables . 6

1 Introduction 7
1.1 Motivation . 8
1.2 Goals . 10
1.3 Structure of the Document . 11

2 Setting the Scene 13
2.1 Service Definition . 13
2.2 Self Organizing Wireless Networks . 14
2.3 Properties of the Environment . 15
2.4 Autonomic Communication Principles 18
2.5 Autonomous Communication Service Framework 20

3 Requirements Definition for System Architecture 23
3.1 Towards a Model for Open Service Runtime Environment 23
3.2 Requirements of Service Runtime Environment 24
3.3 Requirements of Service Entity . 27

4 State of the Art 29
4.1 Mobile Agent Systems . 29
4.2 Peer-to-Peer Systems . 32
4.3 Autonomic Communication Systems 33
4.4 Summary . 36

5 Service Runtime Environment 38
5.1 Service Life Cycle . 39
5.2 Service Management . 41
5.3 Service Migration . 43

6 Service Entity 46
6.1 Service Description . 47
6.2 Service State . 50
6.3 Service Communication . 51

3

Table of Contents

6.4 User Interaction . 55

7 Proof Of Concept 58
7.1 Implementation of the Service Runtime Environment 58

7.1.1 Service Management . 59
7.1.2 Service Migration . 60

7.2 Implementation of an End-user Service 61
7.2.1 Programming Language for the Service Entity 62
7.2.2 Integration of the Service Entity into SRE 63
7.2.3 Service State and Service Description 63
7.2.4 User Interaction . 64
7.2.5 Application Logic . 65

8 Results and Evaluation 66
8.1 Results . 66
8.2 Evaluation . 70

8.2.1 Autonomic Properties of the Service Entity 70
8.2.2 Autonomic Properties of the Service Runtime Environment . . 71
8.2.3 Conclusion . 72

9 Conclusion 73
9.1 Result Summary . 73
9.2 Outlook . 75

Index 78

Attachment 78

Bibliography 83
Table of Contents

4

Table of Figures

2.1 Mesh network . 16
2.2 Overview of node components . 20

3.1 Local and global abstraction layers 25

5.1 The Service Entity life cycle model 41

8.1 ACSF default GUI . 67
8.2 Service management. Default GUI 68
8.3 Service management. RootExtractor Service is started. 69
8.4 Service migration. Default GUI. 69
8.5 Service migration. Service was trasferred to the new location. 69

5

Table of Tables

4.1 Related works . 37

5.1 Service management directives . 43
5.2 Service migration directives . 45

6.1 User Interaction directives . 55
6.2 User Interaction directives . 57

6

1 Introduction

This work contributes to the further development of service architectures for dynamic
wireless networks. This is currently one of the most vibrant research areas within
mobile computing. The main challenge of this research is the design and evaluation
of a comprehensive runtime environment that is capable of supporting distributed as
well as non-distributed services. These services can be seamlessly exchanged between
mobile devices. Service migration from one device to the other can be initiated
either by user interaction or by the service runtime environment. Moreover, the
runtime environment assumes services to be adaptive and self-aware. This means in
particular that services are able to adapt their behaviour to the context provided by
the service runtime environment. Thus the runtime environment can change service
settings such as audio volume, display colours or the amount of data a service is
allowed to transfer.

The service runtime environment runs on all mobile devices irrespective of system
resources, operating systems, and application domains. So are the respective services;
their implementation does not depend on a particular implementation of the runtime
environment.

In contrast to existing approaches the current runtime environment proposes an
innovative concept, enabling light-weight services and facilitating their rapid devel-
opment. While the existing solutions assume intelligent services, which implement
complex methods for self-awareness and adaption to the changes in the environment
(e.g. monitoring of the battery charge level or the quality of wireless links between
mobile devises) within the current service environment methods are abstracted from
the service-level and are handled by the runtime environment.

Such a service runtime-environments for dynamic wireless networks can only ex-
ist as part of a comprehensive service framework. Coincidentally, related research
was underway at Fraunhofer, one of the largest European research organisations.
Fraunhofer Institute for Open Communication Systems in Berlin is taking part in
a large-scale EU-funded project (BIONETS). Work within this project is still on-
going. However, a service framework designed for dynamic wireless networks had
already been specified and partly implemented. Therefore, this framework provided

7

1.1 Motivation

the unique opportunity to embed the current work within an actual working system.

This chapter provides an overview of the subject area and depicts the structure
of the thesis. The first section is dedicated to the motivation of the current work. It
introduces the problem area and current trends, emphasises the key issues involved,
that are addressed within this document. Section 1.2 details research activities to
be carried out and defines the overall goals of this study. Based on this set of goals,
the thesis addresses several tasks, each of them is treated within a separate chapter.
The structure of the document is in section 1.3.

1.1 Motivation

The rapid progress in mobile computing network technology in recent years has been
fueled by the continuously growing market of mobile devices. This opens promising
perspectives for bringing forward the software development in this sphere to a qual-
itatively new level [1]. The performance of modern mobile devices is comparable
with those of desktop computers only a few years old. These devices are driven by
sophisticated operating systems and allow the execution of a wide range of software
applications.

The natural property of mobile devices is their sociality towards each other and to-
wards the global context. The term sociality describes the tendency to build groups
with other devices and to behave as a part of a larger system. Being connected to
the Internet, or just building up a dynamic network of several nodes is of vital im-
portance for utilization of services based on principles of distributed resources, e.g.
file sharing, communication, synchronization etc. which are widely spread in wired
environments. It is these services that will further promote the usage of mobile
devices and their integration into every-day life [1].

A highly desired property of the services in the mobile environment is their dy-
namic distribution [2]. Depending on the users’ current location as well as the
current user needs, particular services are selected and provided to the user. For
example, a tourist enters a museum and gets automatically an application on his
phone, which allows to pay the entrance and which then helps navigating the mu-
seum’s rooms. Another example is an application that is simultaneously used by
participants of a conference and allows the exchange of digital business cards. Ap-
plication scenarios can be found in various business areas such as entertainment,
business, trade, advertisement etc.

Dynamic service distribution requires the implementation of methods for service

8

1.1 Motivation

management, service distribution, service migration, that is an implementation of
a comprehensive and complex service runtime environment. A number of ques-
tions concerning this environment must be addressed. What are the special require-
ments to be met by the service runtime environment? What control mechanisms
are needed? What kind of service concept can fulfil the challenging requirements of
the mobile environment? Can the principles of multi-agent systems be applied to
the innovative concept of the service runtime environment?

The concept of mobile computing brings along a completely new class of chal-
lenges [3]. This refers not only to the connectivity of devices using available global
computer network infrastructures, but also to supporting the direct and immediate
connectivity from device to device. The provision and utilization of the services
in mobile environments, as well as the adequate design and the usability of mobile
applications. Particularly self-organizing dynamic networks, also known as mobile
ad-hoc networks are considered an emerging area of research. Based on unique func-
tional principles, these networks pose specific requirements to distributed systems
and applications. There are two fundamental requirements that play a crucial role
for the concept of mobile services: adaptivity and self-awareness. Whereas adaptiv-
ity refers to the ability of adapting to different use cases, different situations and
different environments. Examples of constraints a particular situation may entail
are: partial or complete absence of the networking infrastructure, unstable wire-
less connection links, heterogeneity at software and at the hardware level and much
more.

To develop innovative communication paradigms, research in the area Auto-
nomic Communication (AC) currently focuses on the concepts of adaptivity and
self-awareness in an attempt. Research in the area of AC assumes that existing
approaches that work in wired environments, do not necessarily meet the require-
ments of dynamic wireless networks. In order to achieve good performance and
enable the development of sophisticated mobile applications, self-organizing net-
working structures must be able to sense their environment, detect and perceive
changes and understand the meaning of these changes. Thus, facilitating new ways
of network control management, middlebox communication, service creation, service
composition etc. This must be based on universal and fine-grained multiplexing of
numerous policies, rules and events to facilitate the desired behaviour of groups of
network elements [4].

Hence, the main concerns of the current work are:

• A conceptualization, implementation and evaluation of a service runtime en-
vironment based on principles of AC and supporting hosting of AC services

• A conceptualization of the AC services for the service runtime environment

9

1.2 Goals

The addressed issues will be studied with a limited scope, that is defined by an
existing software framework called Autonomous Communication Service Framework
-ACSF, a framework designed for dynamic wireless networks developed at Fraun-
hofer FOKUS in Berlin. The service runtime environment (SRE) as developed for
this thesis is to become a core component of ACSF. The choice of ACSF is mainly
motivated by its availability providing the author with the opportunity to imple-
ment and evaluate theoretical considerations. Although ACSF is still in a prototype
stage, it already provides a number of useful features, such as node discovery, frame-
work communication protocols etc. Therefore, this study can focus on the design,
implementation and evaluation of the SRE.

1.2 Goals

The scope of this work is twofold: investigating new approaches and current trends of
research in the domain of service architectures for dynamic wireless networks as well
as the implementation and evaluation of a particular service runtime environment
(SRE) based on principles of autonomic communication (AC).

Firstly, a detailed investigation of the environment is to be conducted, in order to
extract the main properties needed to characterize and categorize dynamic wireless
networks. This will provide a better understanding of the scope of this work and it
will also help to identify common ground as well as reference points to the paradigm
of AC. It is believed that the study of the principles of AC will reveal fundamental
issues that needed to be taken into consideration during the conceptualisation of
the SRE.

The prime goal of this thesis is the design, the development and the evaluation
of a SRE comprising all functional components, needed to enable service manage-
ment and service migration between networking nodes. The SRE should support
distributed as well as non-distributed services. The SRE must deploy services on-
the-fly. The service migration should not meet any assumptions concerning target
device and target SRE. That means in particular, that the service implementation
should not depend on the implementation of a particular SRE. The most important
SRE requirement, and the actual challenge of this work, is to enable light-weight but
at the same time adaptive and self-aware services. That means that the complex
methods for self-awareness and adaptivity to changes in the environment should be
abstracted from the service-level and be handled by the SRE. The services are then
required to be adaptive only to the context provided by the SRE. An appropriate
service concept should be detailed discussed in this work, in order to provide clear-
ness of the SRE concept. The conceptualisation of the actual system monitoring
mechanisms as well as their implementation is not the part of the current research.

The development of the SRE consists of modelling and implementation activities.
The modelling activities are concerned with the service interface, i.e. the interface

10

1.3 Structure of the Document

used by the SRE to control service behaviour (service life cycle, service migration,
service communication), and with actual methods and mechanisms to enable service
manipulations.

The conceptual part involves, among others, the analysis of relevant existing
technologies and research projects. Particularly, software architectures, based on
autonomic communication principles, mobile agents, peer-to-peer communication
paradigms and cross platform programming appear to be relevant for the scope
of this work. Advantages and shortcomings of the existing approaches are to be
investigated and discussed in accordance to the goals of this work.

The implementation is conducted as a proof-of-concept. It comprises the software
development and the discussion of technologies used within the development. The
resulting SRE components should be then evaluated. An end-user service is to be
developed to demonstrate the internal interaction between the various functional
components of the SRE. The results of evaluation should be afterwards compared
with the initial theoretical assumptions.

1.3 Structure of the Document

Overall, the current document is subdivided into nine chapters. Each of them rep-
resents a stepping stone towards achieving the goals as set out in the previous
paragraph.

The first chapter provides an overview of the general problem area, reports on
current trends of research within the domain and refines the academic and practical
goals of this thesis.

The second chapter sets the overall scene and refers to relevant literature in order
to provide a comprehensive foundation for later assumptions, theories and conclu-
sions. The chapter starts with definition of the terms service. An investigation
of dynamic wireless network technologies is considered essential to introduce the
paradigm of ad-hoc networks. It also motivates the decision to utilise mesh net-
works as the main application area for the SRE and its services. Furthermore,
this chapter outlines the conceptualisation of functional components of the SRE by
analysing the specific requirements and properties of the environment. The analysis
of the environment is followed by an introduction of the autonomic communication
paradigm, which is believed to be highly suitable to cater for the next generation of
computer networks. Finally, chapter 2 illustrates the architecture of ACSF and the
meaning of the SRE in its context.

Chapter 3 investigates and analyses the requirements of the SRE and of its ser-
vices. This is done in the context of ACSF in order to achieve a comprehensive
overview of the entire distributed system. The definition of actual requirements is
based on the properties of the environment and the principles of autonomic com-
munication. This is seen as an important step towards designing an abstract model

11

1.3 Structure of the Document

of the SRE. It is argued, that due to the similarities of the paradigms of service-
orientation and mobile agents, the conceptual model of the SRE can borrow from
the concept of multi-agent systems.

Chapter 4 conducts a review of different existing systems and various recent re-
search projects that address similar problems by applying concepts derived from the
areas of multi-agent systems, peer-to-peer networking and autonomic communica-
tion However, it turned out that all solutions could partly meet the requirements as
previously defined.

Chapter 5 deals with modelling the SRE. The concept of service life cycle is the
entry point for the discussion of the functional components that the SRE must
provide. Based on this discussion two essential components are defined, service
management and service migration,

Chapter 6 is devoted to the modelling of the service entity. This model defines
two obligatory service components, service description and service state, as well as
two basic service capabilities: service communication and user interaction. The
components and the capabilities of services are discussed in detail in this chapter.

Chapter 7 reports on the implementation of the SRE and service models. The
implementation of the SRE and of an exemplary service entity are separately handled
in respective sections. These sections focus on a discussion of relevant technologies
and available development tools.

Chapter 8 analyses results achieved and evaluates the AC properties of the SRE
and its services. Evaluation issues comprise the comprehensiveness and accuracy,
technological limitations, error rate and a list of unpredicted problems. Finally, the
autonomic properties of the SRE are analysed in compliance with the requirements
as defined in chapter 3.

Chapter 9 provides a summary of the current work. Theoretical as well as practical
results as achieved are outlined. Goals, methods and results are compared and
interpreted. Finally, an outlook of future activities concerning the SRE and ACSF
is provided.

12

2 Setting the Scene

The realisation of the goals as defined in section 1.2 requires a clear definition of the
scene. Background information based on a review of literature plays a fundamental
role and serves as a reference point for the motivation for particular approaches, for
statements to be argued and for design decisions made in this work.

First of all it is essential to give a formal definition for the term service, in order
to avoid misunderstanding and confusion. This is handled in the first section of this
chapter. The second section investigates the main characteristics of the environ-
ment. The main application domain of the SRE is self-organizing dynamic wireless
networks. There are several members in this networking family, each of them charac-
terized by particular properties depending on the specific application scenario. This
section gives a review of ad-hoc networking concepts and technologies. It also mo-
tivates the limitation of the current investigation to only one networking paradigm,
namely mesh networks. The third section describes in detail characteristic prop-
erties of the environment. This is an important step towards understanding the
problem scope and the autonomic communication (AC) principles. The fourth sec-
tion introduces the AC paradigm in detail. The final section of this chapter deals
with the architecture of the Autonomous Communication Service Framework. The
introduction of existing components gives an overview of the functional abilities of
the system and explains the required complexity for the integration of the SRE into
this framework.

2.1 Service Definition

A Service is also referred to as a Service Entity. It is a fragment of code which
requires a Service Runtime Environment (SRE) for its execution. The Service life
cycle and Service activities are controlled entirely by the SRE. Depending on the
complexity of the application, a Service can be stateless or stateful. The state can
be understood as a context in which a particular Service runs and can be defined as
a scope of values, which are relevant for performing any actions by the Service.

In general there are two types of Services, which SRE aims to support: composed
and non-composed ones. The instances of non-composed Services are independent
in their nature and do not rely on other Services for their successful execution.
In contrast, composed Services depend on a set of particular Services, which are
orchestrated into a larger Service. The parts of a composed Service can run on

13

2.2 Self Organizing Wireless Networks

different nodes.
Services can migrate from one networking node to another. The migration process

can be initiated only by the SRE. Whether a particular Service is transferred with
its state or without it depends on a particular situation. This decision is also met
by controlling mechanisms of the SRE.

An essential component of every Service is its description. Service description
contains information, which can be useful for a human, e.g. the manufacturer, the
name and the version of the Service, how to use the Service etc. Besides this Service
can contain details for the dynamic Service orchestration, which can be performed
automatically and transparent for the user.

Service description plays an important role for the Service discovery and for the
Service migration processes. Due to the environmental characteristics the mecha-
nism for the Service distribution over the network differs from the conventional Ser-
vice discovery in networks with pre-existing infrastructure. In dynamic networks,
where the network topology can change any time, the mobile nodes should exchange
information about the Services they are currently hosting. The meta-information in
the Service description helps to organize Services within specific taxonomies or to
perform rating.

2.2 Self Organizing Wireless Networks

The concept of self organizing wireless networks such as mobile ad-hoc networks
(MANETs), wireless sensor networks (WSN) and wireless mesh networks, has a
large potential and promising perspectives for providing an individual with services
and context information under the conditions of a total or a partial inaccessibility
of the pre-existing network infrastructure.

The classical MANETs are completely self organizing and are very attractive for
particular scenarios, e.g. disaster recovery, vehicle-to-vehicle communications, home
networking etc. Originally, the idea of the dynamic networks came from the military
sector. Nowadays MANETs have very limited penetration as a network technology
for mass-market deployment. The more pragmatic scenario is the utilisation of
multi-hop ad-hoc networks as a flexible and ”low cost” extension of the Internet.
Unlike MANETs, where no infrastructure exists and every node is mobile, in a mesh
network there is a set of nodes, the so called mesh routers, which are stationary and
form a wireless multi-hop ad-hoc backbone. Some of the routers are attached to the
Internet, and provide connectivity to the whole Mesh Network. Mesh routers are
not users’ devices. They represent the infrastructure of a mesh. Routing protocols,
which run on mesh routers, allow the backbone to be self configuring, self healing,
and easy to set up. Client nodes connect to the closest mesh router, and use the
wireless ad-hoc backbone to access the Internet [5].

Mesh networks are moving multi-hop ad-hoc networks from emergency-disaster-

14

2.3 Properties of the Environment

relief and battlefield scenarios to the main networking market [5]. They are fairly
seen as the most possible candidate for the mobile networks of the next generation
(NG). Being chipper in usage and providing better performance than GSM or UTMS
these dynamic networks may completely substitute or at least extend one day cur-
rently widely spread standards. Due to the promising perspectives, this member of
the ad-hoc networking family is the research objective of this work. All the later
statements and analysis will concern first of all the case of mesh networks and will
assume the hybrid networking structures as the target environment.

Since the real interest to the ad-hoc networking has risen only in later years, this
research field is quite young. The main focus of the research activities on the field
of self organizing networks was so far the technical realization of the concept. The
major questions that had to be answered were how to organize mobile devices to
a dynamic network and how to avoid conflicts during sending data by participants
over unreliable medium - over the air. For transport protocols, e.g. TCP, that are
successfully used in wired networks, the strategies for adaption to the existing con-
straints had to be worked out (TCP Reno, TCP New Reno, TCP Vegas etc.). At the
network layer of ISO/OSI protocol stack it was a great challenge to find solutions for
routing tasks (reactive, proactive and hybrid routing protocols). Notwithstanding
this technology is still not ripe enough there are already the first commercial efforts
to realize working prototypes. Thus a Swedish company TerraNet has carried out
already the first successful tests of their mesh network hardware [6].

The unique characteristics of mobile ad hoc networks pose a number of nontrivial
challenges to design of the applications. The investigation of the suitable paradigms
for the next generation applications is becoming a vibrant research area. In particu-
lar the concept of autonomic communication is considered to be a highly promising
one. Its principles seem to suit best of all for the requirements of the dynamic wire-
less networks [7]. This paradigm is one of the research objectives of this thesis. It
will be detailed introduced in section 2.4.

2.3 Properties of the Environment

The environment can be characterized by unique properties, which pose constraints
for the underlying architectures and the structural principles of the distributed sys-
tems. The extraction of the environmental characteristics is the way for understand-
ing these constraints and it is the essential step for determining the complete and
the correct set of requirements, which software designs must meet.

Mesh networks are made up by mobile devices, which are connected via wireless
links. Users’ devices are programmable units, which may vary in size and form, in
computing parameters, e.g. processor tact frequency, random access memory, hard
drive capacity and much more. The examples for such devices are Personal Digital
Assistants (PDAs), smart phones, communicators, notebooks etc.

15

2.3 Properties of the Environment

Figure 2.1: Mesh network

Mesh networking paradigm can be realised on the basis of various wireless net-
working technologies like 802.11 family, Bluetooth, ZigBee, etc. In praxis there is
a tendency towards utilization of IEEE 802.11. Thus there is a draft of the IEEE
802.11 s standards, which defines how wireless devices can interconnect to create
a mesh network. Currently, the networking modules based on the standards IEEE
802.11 a/b/g are integrated in most of the modern mobile devices facilitating the
practical usage of the mesh networks already now.

The utilisation of the wireless technologies and the dynamism of the network
topology entail a complex of problems, which are to be considered at the applica-
tion layer of the protocol stack. The behaviour of every certain network node affects
the network properties and implicitly the behaviour of other nodes. For example, a
particular node B has a low battery charge. Assuming another node A is download-
ing recklessly a large file and involves node B to access the Internet. In this scenario
B can be burdened so much, that it causes the fall out of the node and the change
in the network topology. Thus not only node B, but also node A is affected, because
it is disconnected from the networking resources.

As already mentioned in the introduction chapter the networking elements could
benefit from the autonomic communication paradigm. The ability of any particular
network element to adapt its behaviour adequately to the environmental changes
makes the network to a self-behaving system with properties such as self-healing,
self-configuration, self-organization, self-optimization and so forth - the so called

16

2.3 Properties of the Environment

self-* properties. These self-aware properties of the distributed applications based
on comprehensive system monitoring mechanisms is the goal of the Service Runtime
Environment (SRE).

Besides the complex of considerations regarding structural network organiza-
tion, there is another significant practical issue, namely heterogeneity of the self-
organizing networks. The differences at the hardware level determine partly the
type of operating system and a set of programs that can run on these devices. Thus
a Mesh Network can be made up of units driven by Windows family operation sys-
tem (Windows XP, Windows Mobile etc.), Unix family operation system, Symbian
and much more. Since the mesh networking paradigm sets no strict constraints
regarding hardware and software, the networks may have a highly heterogeneous
character. One of the prime challenges in the domain of dynamic wireless network
is to overcome the heterogeneity and to enable the development and the execution of
programs independently from the software and hardware equipment of a particular
device. The cross platform concept of the designing systems is one of the require-
ments, facilitating the transparent and convenient way for software development and
software usage as well.

The next environmental characteristic is application types which are supported by
the underlying networking technology. Wireless technologies based on IEEE 802.11
standards enable real time as well as non real time services. This opens the facilities
for development of the asynchronous services, like Email, as well as synchronous
ones like instant messaging, video streaming etc.

Like in the wired networks, the data exchange between mobile nodes is always
firmly coupled with the security and privacy issues. The threats of malicious code
or affected privacy are significant aspects, which have to be taken into consideration
when designing services for the current environment.

The most important environmental characteristics are summarized once again in
the list below:

1. Application domain: mobile mesh networks.

2. Mobile devices may differ significantly from each other both in hardware and
software capacities.

3. Autonomic communication paradigm is the natural way for the architectural
organization of the software solutions in dynamic wireless network.

4. Wireless technologies support the realisation of real-time and non-real-time
services.

5. Data exchange between mobile nodes entails threats of security nature.

17

2.4 Autonomic Communication Principles

2.4 Autonomic Communication Principles

The term autonomic communication(AC) addresses a considerable area of research
and industrial interest. Its results are turned to a deep foundational re-thinking of
communication, networking, and distributed computing paradigms, to face the in-
creasing complexities and dynamics of modern network scenarios [8]. The ultimate
vision of autonomic communication researches is that of a networked world, in which
networks, associated devices and services will be able to work in a totally unsuper-
vised - i.e., autonomic way, being able to self-configure, self-monitor, self-adapt, and
self-heal [9]. By analogy to the human autonomic nervous system, which regulates
homeostatic functions without conscious intelligent control, autonomic communica-
tion seeks to simplify the management of complex communications structures and
reduce the need for manual intervention and management [7].

AC is closely related to autonomic computing, which is often described as self-
CHOP (self-configuration, -healing, -optimisation, and -protection). Despite their
evident similarities, there are significant differences between autonomic computing
and communication. While AC is more oriented towards distributed systems and
management of network resources at both the infrastructure and the user levels,
autonomic computing is more directly oriented towards application software and
management of computing resources [7]. Nevertheless both research areas recognize
the need for decentralized algorithms and control, context-awareness, novel program-
ming paradigms, end-to-end privacy management, and comprehensive evaluation in
order to increase stability and efficiency of designed systems.

Self-organization, which lies at the base of the AC paradigm, is characterized by
following requirements [10]:

1. Self-awareness. An autonomic system must know the components it consists
of, current status, ultimate capacity, and all connections to other systems to
govern itself. Besides that, the system has to be aware of resources it currently
possesses, also of those, which can be lend or borrowed, shared or should be
isolated.

2. Self-[re]configuration. An autonomic system must configure and reconfigure
itself absolutely dynamically according to any involving situation. One speaks
often of so-called zero-effort deployment.

3. Self-optimisation. This property requires from an autonomic system to opti-
mize and to fine-tune its activity in order to achieve predefined system goals
in a best way.

4. Self-healing. An autonomic system must be able to discover problems, recover
itself after system crashes and look for alternative usage of resources, if it keeps
the system functioning smoothly.

18

2.4 Autonomic Communication Principles

5. Self-protection. An autonomic system must detect, identify and protect it-
self against various types of attacks to maintain overall system security and
integrity.

6. Self-adaption (context). An autonomic system must know its environment and
the context surrounding its activity, and act accordingly.

7. Self-description (openness). While independent in its ability to manage itself,
an autonomic system must function in a heterogeneous world and implement
open standards.

8. Self-implementation. It must marshal I/T resources to shrink the gap be-
tween the business or personal goals of the user, and the I/T implementation
necessary to achieve those goals – without involving the user in that imple-
mentation.

The enumerated properties above let characterize the AC by the following formula
[11]:

AC Key Issues = Adaptivity & Self-awareness

These two properties are the fundament of this paradigm and express the vision of
the next generation networks, which is to be found in numerous technical literature.
The next question, which is to be answered, is what are the actual benefits? What
are advantages of the AC and the next generation networks over static network
architectures of nowadays?

First of all it is the cost factor. The realisation of the desired vision of being al-
ways online anytime and at any place based on the traditional networking concepts
is coupled with great complexity for providing the networking infrastructure and
service management. During self-organizing networks together with distributed ap-
plications based on principles of Autonomic Communication offer a chipper solution,
the current approaches cause enormous costs for service providers and customers as
well.

Apart from the cost factor AC paradigm promises a better service quality. Self-
adaptivity property of the next generation networks allows adequate handling of
even unpredictable situations. The centralized mechanisms lack this flexibility and
can guarantee the correct handling of only certain standard scenarios.

Another beneficial issue is the new spectrum of applications, which become possi-
ble due to the new paradigm. That does not always mean, that particular application
scenarios cannot be realised by means of centralized mechanisms. However, the re-
quired complexity can be in certain cases unproportional to the expectations of the
service developers and service customers [12].

Hence, the perspectivity of the innovative AC paradigm provides the current work
with additional motivation to investigate its foundational principles and to study
them in practical application.

19

2.5 Autonomous Communication Service Framework

2.5 Autonomous Communication Service Framework

The current section introduces the architecture of Autonomous Communication
Service Framework (ACSF). This framework will be later applied as assistant tool
for the evaluation of the technical realisation of the Service Runtime Environment.

ACSF is a development of Fraunhofer Institute FOKUS in Berlin. The goal of
the project is to offer a universal software platform, facilitating service execution
and service exchange between mobile devices in dynamic wireless networks. The
term universal means in this context that the platform takes into account existing
constraints of the environment and offers an adequate solution for particular tasks.
This project derivates from the larger European project called BIONETS [13] and
has inherited some of its concepts.

The prime operating entity in terms of ACSF is a Service Entity. Service Entities
are to be understood according to the Service definition in section 2.1. Services can
be exchanged between ACSF instances or can be downloaded from the Internet.
ACSF is designed for the mesh networks and assumes in general the existence of a
stable global network kernel.

The system architecture of ACSF is shown at figure 2.2.

Figure 2.2: Overview of node components

The Runtime Environment (RE) of ACSF serves for execution of services and
management entities. It is built on the notion of abstracting physical and virtual
devices by nodes. Depending on physical capacities of devices RE exists in two vari-
ants, one with full feature set and one with only standard functionalities. The fully
featured RE comprises three containers, one container for services, one container for

20

2.5 Autonomous Communication Service Framework

management entities, so called Mediators, and one container for Interaction Models.
Application and Management containers build up the environment, so called Service
Framework in which Services are executed and managed.

Application container

Application container is of special interest for this master thesis, because it rep-
resents a place holder for the Service Runtime Environment (SRE), which will be
conceptualised and developed in the current work. The application container should
provide the structural organization of the executing Services. It must realise mecha-
nisms regulating Service life cycle. Preparing a particular Service for migration and
receiving Service from other nodes are also the tasks of the application container.

Management Container

While Services realise the application logic, Mediators perform all node-related or-
ganisational tasks. They provide mechanisms for monitoring the environment and
the internal processes of ACSF node. They are able to evaluate the gathered mon-
itoring information and adequately react to the changes. Particular Mediators can
interact with the SRE and use its management mechanisms to improve the system
performance.

Unlike Service Entities Mediators are pre-installed units and cannot be dynami-
cally exchanged between ACSF instances. Every ACSF instance can be equipped
with its own set of Mediators. In dependence on the device capacities or the user
preferences ACSF can be configured by adding or deleting Mediators.

Interaction Framework

The Interaction Framework contains implementation of predefined communication
patterns, the so called interaction models, such as Publish/Subscribe, DHT, or Se-
mantic data Space. The interaction framework abstracts the implementation of
interaction models from the upper components. Like the Mediators, the Interaction
Models have to be pre-installed on each ACSF node. Depending on the involving
situation Mediators can choose one of the communication patterns to communicate
with Mediators at the other network nodes.

Network Interface

Network Interface Layer of the ACSF architecture represents a wrapper around the
communication channels. It enables the access to the other nodes over the network
and makes this access transparent to the functional components of ACSF. Network
Interface offers a set of operations on resources, according to a principle called CRUD

21

2.5 Autonomous Communication Service Framework

(create, read, update, delete). In the current implementation HTTP protocol is used
for the realisation of this concept.

22

3 Requirements Definition for
System Architecture

The previous chapter gave an overview of the application environment, its charac-
terising properties and the concept of autonomic communication, as the foundation
of the self-organising networks. These background facts make it possible to get from
the general awareness of the problem area to the discussion of the service runtime
environment (SRE) concept. The SRE concept is a necessary step towards a SRE
model and a prerequisite for the definition of system requirements.

The SRE concept is discussed in section 3.1. As it will be shown there, the defini-
tion of the system requirements should assume two views. Adaptivity and awareness
are to be expected in the global context as well as in the execution context of Services.
That is why the set of requirements is divided into two classes, Service Runtime En-
vironment specific requirements and Service Entity specific requirements, which will
be discussed in respective sections.

3.1 Towards a Model for Open Service Runtime
Environment

Based on the autonomic communication (AC) principles and the properties of the
environment, this section introduces the first step towards a model for the SRE. It is
essential to investigate now, whether the ecology of Services can be considered as a
sort of a complex agent society and whether the SRE can borrow the distinguishing
marks of multi-agent systems.

The similar question is detailed discussed in [9]. This paper focuses on AC ser-
vices with the goal of ”trying to synthesize the key desirable characteristics that
one should expect from a general-purpose component model for autonomic commu-
nication services and the contributions that can come from the agent community”.
It is claimed in this work, that ”an agent model can be the most suitable answer
to the challenging requirements of autonomic communications. Nonetheless, past
agent models do not fulfil all the requirements”. Furthermore the authors of this
paper explain, that the component model for the multi-agent systems should ”be
able to enforce autonomic behaviour in both the forms of self-adaptation and self-
organization, able to handle ”‘situatedness”’ in complex knowledge environments,

23

3.2 Requirements of Service Runtime Environment

and should tolerate scalable forms of dynamic aggregation”. Hence, AC services can
be seen as advanced agents fulfilling the principles of adaptivity and self-awareness.

On the one hand the SRE should be like most of the execution environments
for mobile agents, just a container for Services supporting primitive operations like
starting, stopping, terminating etc. On the other hand it should be an intelli-
gent environment for smart entities. Different as in [9], where agents/service are
assumed to be of two kinds, very simple reactive agents and more heavy-weight
”intelligent” self-adaptive agents, this work envisions an innovative concept of only
light-weight Services. The idea is to realise most of the adaptivity and self-awareness
capabilities of AC services as a part of the SRE. For example the SRE could con-
tain self-protection mechanisms enabling safe communication between Services, self-
implementation mechanisms enabling automated Service discovery for aggregation
of composed Services etc.

For the realisation of this concept Services should be isolated from the direct
contacts to the global environment. Instead of that each Service should implement
logic for handling only a standard set of changes, which are injected by SRE’s
control mechanisms. These injections are results of projection of the global changes
in the environment into the local context. The SRE monitors the environment and
transforms the monitoring information into standard control directives, which can
be interpreted by every Service. Figure 3.1 illustrates these two abstraction levels.
The global context is given by a network of ACSF Nodes with integrated SREs. The
local context is provided by the SRE.

Such a concept is assumed to have two major benefits. One of them is that Service
application logic stays simple and does not include any sophisticated monitoring
mechanisms. The other advantage is that due to uniform set of possible local events
defined by the SRE, Services must not be modified, if, for example, they should
be used in dynamic networks with other organisational principles than mobile mesh
networks. Modifications are only required at the SRE.

The described concepts for the SRE and Services pose particular requirements
to functional components of the SRE as well as to the respective Service Entities.
These requirements are defined in the next sections.

3.2 Requirements of Service Runtime Environment

Requirements definition is based on eight principles of autonomic communication
(AC) as discussed in section 2.4 and the concept of the service runtime environment
(SRE) as outlined in section 3.1. The meaning of the AC principles for the design
of the SRE architecture is discussed below. It is reasonable at this point to look at
the Service Runtime Environment in the context of ACSF, because it will provide a
better understanding of the cooperation, which is required from the network nodes.

1. Self-awareness. Every ACSF instance is a part of a distributed system. In

24

3.2 Requirements of Service Runtime Environment

Figure 3.1: Local and global abstraction layers

order to provide self-awareness property, every networking node has to be in-
volved in a continuous interaction with other neighbours. Exchanging specific
messages makes it possible for every participator to know it surrounding, to
use and to share the distributed resources.

In appliance to the SRE this issue assumes a realisation of mechanisms, al-
lowing data exchange between network nodes about Services, which they are
currently hosting. This data can include Service descriptions, Service state,
Service dependences on other Services etc.

2. Self-[re]configuration. The desired scenario is when a new node joining the
existing network, adapts its initial state adequately to the evolving situation.
ACSF has to implement mechanisms, which enable self-configuration and re-
configuration depending on the network size, available resources and many
other factors. Especially self-configuration property requires from SRE the
implementation of configuration mechanisms, which should be used by ACSF
node. This assumes the design of the SRE as the framework supporting at least
two configurations. Depending on physical capacities of a particular mobile
device, ACSF could configure SRE as a full featured or as a light weighted ver-
sion. The light weighted one is only able to run the Services. The full featured
version offers an extended feature set, e.g. extended networking capabilities
like Service discovery.

25

3.2 Requirements of Service Runtime Environment

3. Self-optimisation requires mechanisms, which enable the cooperation of all
ACSF instances, especially cooperation of their SREs, targeted at improve-
ment of the system performance. Such mechanisms can control communica-
tion traffic between nodes, redistribute resources and roles in the network etc.
These mechanisms can even initiate Service migration, if for example a better
performance is expected at the neighbour node. In particular scenarios the
migration is coupled with an obligatory transfer of the Service state, whereas
in other cases only a code migration is required.

Self-optimisation property reveals a similarity to the self-reconfiguration. In-
deed, in both cases a certain node adapts its behaviour. The difference is that
self-configuration envisions a particular node passively to accept the predeter-
mined parameters, while in the self-optimisation process every ACSF instance
is actively involved and contributes to the common goal.

4. Self-healing property provides in particular ACSF instances with ability to
reorganise the distributed system, when a particular network node/ACSF in-
stance leaves the network. The reorganisation performs healing of the com-
munication process between nodes and the possible misbalance in distribution
of resources. In such scenarios SREs should be able to update the information
on Services, which are present in the network and if required to redistribute
some ServiceEntities over the network to achieve the former system stability.

5. Self-protection. ACSF instances have to implement mechanisms, which are
able to protect the system against potentially malicious system elements.
These mechanisms have to detect the suspicious behaviour of the network-
ing nodes, to support safe communication, to provide functionalities for iden-
tification and authorization etc. Self-protection requires from the SRE the
realisation of mechanisms controlling code distribution and communication
process with other SRE instances.

6. Self-adaption property provides the designing system with ability to be aware
of the context it is executed in. The monitoring of the changes in the environ-
ment is a necessary routine for successful and stable work of ACSF and SRE
as well. In general, monitoring data like usage of network channels, computing
capacities of mobile devices or power consume can help to improve stability
and efficiency of the system. The most important changes in the environment
have to be registered and analysed by ACSF. Some of these changes, which
are relevant for Service execution have to be forwarded to the SRE as informa-
tion units for further evaluation, or as control instructions for an immediate
execution.

7. Self-description. The usage of open standards is the only way to provide the
universality of the ACSF design. A system concept, which is free from any

26

3.3 Requirements of Service Entity

assumptions concerning target hardware and software environment, enables
especially the realisation of ACSF and the SRE for any platform. For example
a particular ACSF instance implemented in a C# programming language can
coexist and interact with instances implemented in Java, Python etc.

8. Self-implementation. One of the challenges of ACSF is the support of com-
posed Services. The Service composition must be carried out without user
involvement. The effective interaction between SREs is the key to the realisa-
tion of this concept.

3.3 Requirements of Service Entity

Services represent a lower level of abstraction. While adaptivity and self-awareness
of ACSF instances and their SREs are required in the global context as outlined in
previous section, Services must be adaptive and self-aware in the context provided
by the SRE. Being hosted at a particular network node, Services act as autonomous
entities. They also sense the environment they are executed in, and react accord-
ingly to the occurring changes. However, the character of relationship between
Services and the SRE differs from that at the global level. The SRE plays a role of a
supervisor. It prescribes the Service Entities when and how they have to adapt. Par-
ticular control directives are forwarded through a common Service interface, which
every Service has to implement. Obeying these directives, every Service implicitly
contributes to the achieving of the desired node behaviour in the global context.

In following the meaning of the self-organizing principles as introduced in section
2.4 for Service Entities is discussed.

1. Self-awareness. A Service is an autonomous entity. Its internal execution
processes are encapsulated and are not directly accessible from outside. Only
the Service Entity itself is aware of them and can influence them.

2. Self-configuration. Services have to implement mechanisms, enabling its con-
figuration and reconfiguration. The access to these mechanisms should be
granted to the SRE. The examples for possible configuration parameters are
user interaction mode (audio or visual), volume of the played audio files, QoS
parameters, some variable values etc.

3. Self-optimisation. A ServiceEntity can realise more than one algorithm for
execution of a particular task. In dependence on configuration parameters the
automated switch between these algorithms can be performed. For example, if
a particular Service performs data sort, it can switch between various sorting
algorithms in order to improve its performance.

27

3.3 Requirements of Service Entity

4. Self-healing.This property requires from Services to be able to recover their
execution state after, for example, system crash or after migration to another
execution environment.

5. Self-protection. This property can be seen as an optional. The prime pro-
tection mechanisms should be realised within SRE. However, the application
logic of a particular Service can implement additional mechanisms like warning
during transmission of private data, login and password for access of particular
functionalities of the Service etc.

6. Self-adaption property is provided by the configuration mechanisms. The SRE
can any time assign a particular configuration to a Service. Based on the
parameters values the Service Entity can adapt its behaviour.

7. Self-description. This property requires the utilisation of open standards for
Service development. The final goal is that Services can be executed in all or at
least in most systems. Service Entities should not depend neither on particular
implementation of the SRE nor on the software environment of a particular
device. The examples of open standards could be XML for generating of cross
platform GUIs, ECMA JavaScript for the realisation of the application logic
etc.

8. Self-implementation. This property requires transparency for the user while
building up composed Services. The utilisation of composed Services should
not vary from the usage of non-composed Services.

28

4 State of the Art

Previous chapter has introduced the concept of the SRE and has defined the re-
quirements for the SRE and respective Services. Based on these results it becomes
possible to discuss existing projects and solutions, which address the same problem
area and fulfil some of the defined requirements. The comparison of different solu-
tions will help to identify the common tendencies and to consider the advantages
and disadvantages of existing projects in the current work.

Although there are numerous discussion papers and tutorials on autonomic com-
puting, networking and communication there is still a lack of guidance on how to
define and to implement autonomic communication systems. There is neither an
accepted definition of what an autonomic network is, nor a definition of what auto-
nomic management or autonomic communication is [14]. That is why it is hardly
possible to conduct the-state-of-the art analysis referring to any accepted standards,
established approaches and stereotyping way of thinking. The reference points in
the current analysis are only SRE concept and the set of requirements defined in
section 3.

As it was shown in section 3.1 the SRE will be conceptualised as an advanced
multi-agent system and its Services will remind of advanced mobile agents. That
is why it is reasonable to look firstly at the most known agent-based architectures.
Solutions for agent hosting, agent migration and agent management are of particular
interest. Mobile agent systems are discussed in section 4.1.

It is expected, that relevant works can be also found in Peer-to-peer networking.
The techniques which are applied there for peer discovery, self-organization into peer
groups, advertising etc. can be used for the realisation of self-awareness properties
of AC Services. These works are discussed in section 4.2.

Section 4.3 introduces some known AC systems. However, most of these projects
are still in development and will be completed in one or two years. That is why
there is no empiric data yet and it is only possible to discuss the conceptual issues
of these works.

4.1 Mobile Agent Systems

The first mobile agent system is IMB Aglets. This is one of the earliest and widely
accepted agent systems, which was developed at IBM research labs.

29

4.1 Mobile Agent Systems

IMB Aglets

The name Aglet is composed of two terms Agent and Applet and reflects the nature
of Aglets. Aglets are Java objects that can move from one host to another. They
can any time make a decision to halt their execution, dispatch to a new location and
re-start executing again by presenting their credentials and obtaining access to local
services and data [15]. The Aglets are characterized by two important properties:
Object-passing and Autonomous Execution. Object-passing means that when a
mobile agent is transferred, the whole object is passed; that is, its code, data, state,
and travel itinerary are passed together. Autonomous Execution says that a mobile
agent possesses all the sufficient information to decide what to do, where and when
to go [16]. Aglets runtime environment defines only the most necessary management
methods to control agent life cycle, mobility, travel, itinerary, and security.

In contrast to IBM Aglets system SRE concept does not assume Autonomous
Execution for AC Services. Services rely on the mechanisms within SRE, which
provide a particular Service with abilities to adaptation and self-awareness.

A significant shortcoming of Aglets framework is its binding on Java Virtual
Machine. That means that only that equipment can make use of Aglets, which
has software and hardware prerequisites for running JVM.

Another mobile agent system often referenced in the technical literature, is Agent
Tcl, which was developed at Dartmouth College.

Agent Tcl

The main programming language of Agent Tcl is Tcl, but it provides a framework
for incorporating additional languages like Java. Agent Tcl architecture consists
of four levels. The lowest level is an API for the available transport mechanisms.
The second level is a server that runs at each node. The server is responsible
for management tasks like accepting and registering new agents, keeping track of
agents, authenticating the identity of the agent’s owner, passing the agent to the
appropriate interpreter etc. The third level is the level of interpreters for supporting
languages. Apart from the actual interpreter this level must include security model
for migrating agents, state module enabling restoring of the agent state and the
API that interacts with the server to handle migration, communication and check
pointing. The top level of the system architecture is the agent itself [17].

A great advantage of this system is its ability to execute mobile agents written in
numerous scripting languages. The usage of several interpreters makes the system
flexible and makes the agent implementation independent from the realization of the
agent framework. This fact meets a desired self-description property (see section 3.3)

30

4.1 Mobile Agent Systems

The next related work is a German project Ara.

Ara. Agents for Remote Action

Ara agent system was developed at the University of Kaiserslautern. In many aspects
Ara’s concept is very close to that of the Agent Tcl system. Especially, Ara does
not prescribe an agent programming language. Like Agent Tcl it supports the
integration of several interpreters [18].

Ara realises a good concept for the networks with limited bandwidth. The only
way of communication between mobile agents in Ara is the asynchronous message
exchanging. Ara’s concept encourages mobile agents to meet up at some host and
interact there in a client-service manner rather then to communicate over the net-
work.

However, such a concept cannot be taken for the SRE. Except for particular
scenarios, inter-node communication is the key mechanism enabling the fulfilling of
the requirements in sections 3.2 and 3.3.

The next mobile agent system, which is worth introducing here, stands out
due to the fact, that it is the first OMG MASIF and FIPA 97-conformant agent
platform[19].

Grasshopper

Grasshopper system was developed by GMD FOKUS and IKV++[20]. Grasshopper
is compliant with the agent standard MASIF. Unlike Ara it supports multiple com-
munication protocols such as Remote Method Invocation (RMI), RMI SSL, Plain
Socket, Plain Socket/SSL, and IIOP. Supported communication modes include syn-
chronous, asynchronous, dynamic, and multicast [21].

Grasshopper’s agents are Java-objects. The agent framework in terms of
Grasshopper is called agency. An agency may contain either static or mobile agents
and may be subdivided in more than one place. Agent framework contains once
special service, called region registry service. This service manages information on
agents, agencies and places. Using region registry an agent can find out a location
of a particular service and migrate there to benefit from local interactions [21].

Unlike agent systems that were introduced above the next related project was
designed for Mobile Ad-Hoc Networks.

31

4.2 Peer-to-Peer Systems

MAGNET

The agent framework MAGNET [22] is implemented in Java and currently only
Java based agents may be executed. This system is made up of four levels. Each
level can be seen as a group of agents that execute particular tasks. The lowest
level is the network level. The network agents manage such types of connections
as IrDA, Bluetooth, and cellular phone network connections. They interact with
protocol agents and routing agents. The agents at the network level are responsible
for constructing an ad-hoc network. The second layer is the mobile application layer
which contains the application agents i.e. the mobile agents that migrate over the
network. The third layer consists of the intelligent agents. They are informed by the
network agents about the changes in the environment, and select the appropriate
network device and protocol or suitable application for ad-hoc communication. The
top layer is the user layer and is made up of the agents managing the user profile
and preferences data. These agents cooperate with the agents at the intelligent and
at the application layer [22].

MAGNET demonstrates a large potential for hosting of intelligent agents: system
monitoring and cooperation of agents at different layers. However, the architecture
of MAGNET could not support ”middle-weight” Services as described in section
3.1.

Other Mobile Agent Systems

Besides the most successful systems described above there are a lot of other less
successful efforts for realisation of agent based technologies. Thus it is important to
mention Telescript, one of the first commercial agent systems developed by General
Magic [23]. This system uses its own programming language and that led to the
fact that Telescript didn’t manage to acquire a wide recognition. In another paper
[24] a Python implementation of a framework for mobile agents, developed at the
University of Tennessee, is proposed. This framework (called MAF) is used in sensor
networks.

4.2 Peer-to-Peer Systems

The discussion of Peer-to-Peer systems is limited to the introduction of only one
representative project, namely JXTA. Most of the modern P2P systems are based
on JXTA, its principles and protocols. The introduction of JXTA will demonstrate
possible methods for the realisation of self-awareness property of SRE.

32

4.3 Autonomic Communication Systems

JXTA

JXTA is one of the most famous and widely used P2P systems. This project was
initially started by Sun Microsystems, but later was made to an open source project.
JXTA is actually a set of protocols that enable any connected device on the network,
ranging from cell phones and wireless PDAs to PCs and serves for communication
and collaboration in a P2P manner. JXTA standardizes the way in which peers
discover each other, self-organize into peer groups, advertise and discover network
recourses, communicate with each other and monitor each other [25].

The architecture of JXTA can be summarized as the cooperation of three kinds
of peers: Minimal-Edge peers, Full-Edge peers and Super peers. Minimal-Edge
peers implement only required core JXTA services and in order to participate in
a JXTA network they have to rely on proxy peers. An example for the minimal-
edge peer can be some sensors with little set of computing capacities. Full-Edge
peers implement all core and standard JXTA services and can participate in all of
the JXTA protocols. Super peers implement and provide resources to support the
deployment and operation of a JXTA network [25].

The current design of JXTA suites well only for wired networks. According to [26]
the architecture of JXTA requires particular changes, if it should be used in ad-hoc
networks. This paper deals with an approach for adapting JXTA to the special
characteristics of dynamic wireless networks.

An important significant characteristic of JXTA is its openness. A P2P frame-
work based on JXTA protocols may be implemented in any high level programming
language and for any platform. Currently Sun offers an own implementation of
JXTA. There exists also a realisation of JXTA in C#. This JXTA property is in
line with the general requirements of the AC systems.

4.3 Autonomic Communication Systems

One of the earliest projects, which proposes a scalable, adaptive and survivable
architecture based on biological system principles is BIONET.

BIONET

The proposed Bio-Networking architecture was developed within BIONET project
at the University of California, Irvine and supported by NFS and DAPRA. The
architecture can be deployed using paradigm guides to design autonomic network
applications and a middleware that provide software components to build appli-
cations. The Bio-Networking Architecture introduces also a middleware on which
cyber-entities exist. Cyber-entities are autonomous mobile agents that are used to
implement network applications. The Bio-networking platform provides therefore

33

4.3 Autonomic Communication Systems

the execution environments and supports services for the cyber-entities. The Bio-
Networking approach relies on mobile agent background and therefore reuses some
of its concepts [27].

The Bio-Networking platform requires Java virtual machine for its execution.
There are three main components: Bionet services, Bionet message transport and
Bionet container. The Bionet services provide a set of runtime services that cyber-
entities frequently use. Examples of the Bionet services include the Bionet relation-
ship management service, Bionet energy management service and Bionet discovery
service. The Bionet message transport abstracts low-level networking and operat-
ing details such as network I/O, concurrency, messaging, and network connection
management. The Bionet container dispatches incoming messages to cyber-entities
running on a local Bio-Networking platform [28].

BIONET was the first project. Aftwerads DARPA and NSF have launched a num-
ber of other projects grouped in two initiatives called Architectures for Cognitive
Information Processing (ACIP) and Biologically-Inspired Cognitive Architectures
(BICA). The European commission has also launched in its 4th call of the FP6
(Research Framework Programme) a long-term research initiative in the area of Sit-
uated and Autonomic Communication: BIONETS, ANA, HAGGLE, CASCADAS
as well as a coordination project called ACCA which coordinates and integrates new
proactive initiative in the area of self-organization [27].

ANA

ANA stands for Autonomic Network Architecture. The aims of ANA project are
of a global character and envision the reorganization and restructure of the current
Internet concept. ANA is to be seen as new generation of OSI with clear APIs and
mechanisms [29]. The ultimate goal of the project is to design and to develop a novel
network architecture that enables flexible, dynamic, and fully autonomic formation
of network nodes as well as whole networks . It will allow dynamic adaptation
and re-organisation of the network according to the working, economical and social
needs of the users. This is expected to be especially challenging in a mobile context
where new resources become available dynamically, administrative domains change
frequently, and the economic models may vary [30].

HAGGLE

Haggle is a layerless networking architecture for mobile devices. It is motivated by
the infrastructure dependence of applications such as email and web browsing, even
in situations where infrastructure is not necessary to accomplish the end user goal,

34

4.3 Autonomic Communication Systems

e.g. when the destination is reachable by ad hoc neighbourhood communication
[31, 32].

Adaptivity to the environmental changes and context-awareness are common is-
sues, which make Haggle and current work related. However, the focuses of both
research works are different. Haggle is aiming to provide a sophisticated middleware
realizing mechanisms for infrastructure independent inter application communica-
tion, while the goals of this work are to conceive a runtime environment for cross
platform Services. The results of Haggle are interesting for later discussion of ap-
plication scenarios for AC Services. What should communication protocols between
Services look like? Is it possible to realise universal protocols, which work in wired
networks and ad-hoc networks as well? For example if it is required to send an
Email from node A to node B, it must be a transparent process for the user, and it
must make no difference, whether the Email is sent directly from A to B via ad-hoc
link or via SMTP service as it is usual in Internet.

CASCADAS

CASCADAS stands for Component-ware for Autonomic, Situation-aware Commu-
nications, And Dynamically Adaptable Services. The goal of the project is to iden-
tify, to develop, and to build a new model of distributed components, called ACEs
(Autonomic Communication Elements), which have the ability to self-organize au-
tonomously and cooperatively with each other, provide specific user communication
services, and adapt the provisioning in an autonomic and specific context-aware
manner to social and network contexts. In other words, services will be composed
of software components capable of understanding the general and specific context in
which they operate (physical, technological, social, user-specific and request-specific)
and spontaneously aggregate and organise their activities according to that context
[33].

ACEs act as an access points to services, making the service and associated re-
sources available. This is the main difference to the Service definition in section 2.1.
ACEs are to be seen as advanced composed Services. While composed Services sup-
ported by SRE define only static aggregation rules, ACEs can build up composed
ACEs absolutely dynamically. The runtime environment for ACEs is just a con-
tainer for running ”heavy-weight” intelligent entities. The capabilities of adaptivity
and self-awareness are realised in the logic of ACEs.

BIONETS

BIONETS stands for BIOlogically-inspired autonomic NETworks and Services. The
goal of the BIONETS project is to provide a biologically inspired open networking
paradigm for the creation, dissemination, execution, and evolution of autonomic
services, able to adapt to the surrounding environment and user needs, to evolve

35

4.4 Summary

without direct human supervision, and to deal with large-scale networks of hetero-
geneous nodes ranging from small, cheap devices to more complex network nodes.
BIONETS defines an autonomic framework, based on bio-inspired concepts, for pro-
viding stable operations and service management functionalities in a fully distributed
and decentralized way [13].

There are three main actors in BIONETS networks: T-Nodes - simple devices
with environment sensing capabilities, U-Nodes - powerful user devices and Access
Points - so called proxies between BIONETS networks and IP networks [13].

BIONETS is a large project consisting of several thematic parts. ACSF emerges
initially from one of them. ACSF is currently developed as a separate project. Its
concept has been simplified and reoriented to the other application scenarios.

4.4 Summary

The review of literature gave an overview of the most well-known related works.
The projects of three research areas were briefly introduced: Mobile Agent systems,
Peer-to-Peer networking and Autonomic Communication. The review showed that
the concept of the SRE is unique. None of the solutions proposes an intelligent
SRE, which provides ”light-weight” AC services. The properties of the service/agent
runtime environments of the discussed projects are summarized in the table below.
The top horizontal row enumerates properties of the services, which can be hosted
by a particular SRE. The left vertical line contains enumeration of projects, that
were discussed in this section. + means such services are supported, - means not
supported, +/- means partly supported.

36

4.4 Summary

Table 4.1: Related works

cross-
platform

self-
awareness

adaptivity heavy-
weight

IBM Aglets - - - -
Agent TCL + +/- - -
Ara + + - -
Grasshopper - + - -
MAGNET - +/- +/- -
JXTA + + - +
BIONET - + + +
ANA + + + +/-
HAGGLE + + + +/-
CASCADAS - + + +
BIONETS - + + +/-
ACSF + + + -

37

5 Service Runtime Environment

This chapter is dedicated to the design of the service runtime environment (SRE).
The designing process abstracts at first from any implementation considerations
and leans in following on the results achieved in previous chapters, the analysis of
existing technologies and investigation of key advantages of successful approaches.

The goal of this chapter is to define functional components of the SRE and to
conceptualise mechanisms allowing hosting of Service Entities. An obligatory re-
quirement is the compliance with autonomic communication (AC) principles. In
general the compliance is required both at the global organizational level as dis-
cussed in section 3.1 and in the local context as explained in section 3.2. However
the scope of this thesis is limited to discussion of the mechanisms providing the
local context. The compliance with the requirements of section 3.1 will be achieved
in that sense, that the conceptualised SRE will provide a potential possibility for
extensions by additional functional components.

The scope of the designing activities comprises also the definition of an interface
(in following called Service interface) between the control mechanisms of the SRE
and the hosted Services. Service interface acquires an additional sense in the context
of Autonomic Communication. Performing such actions on Services as starting,
terminating, moving a Service to the other node etc. the SRE propagates the changes
of the global environment to the local context. Service interface is to be seen as a
mapping between global and local events. If, for example, such external factors as
unstable wireless connection or low battery power, make the SRE to decide to move
a Service to another node (adaptivity in the global context) the Service is required
to stop and to leave the node. In the local perspective these two directives are
the events/changes in the Service Runtime Environment. As the reaction to the
evolving situation the Service stops and gets ready for migration (adaptivity at the
local level).

The introduced schema of event propagation from the global context into the
local one together with desired interface complexity sets particular requirements to
the design of the SRE and the Service interface. The issues bellow are the main
guidelines, which are to be held during designing process.

• Service interface should stay as simple as possible. It is an important issue,
which provides the light-weightiness of the Service application logic and thus
makes Service development to a simple task.

38

5.1 Service Life Cycle

• Service interface should be nevertheless universal and completely cover all the
management needs of the SRE.

The methodical approach for the realisation of the defined goals can be formulated
as follows. First of all it is necessary to define formally a life cycle model for the
Services. Based on the life cycle model it will be possible to extract a complete set
of managing components, which will control hosted Services at different stages of
their execution. The collaboration of these functional components will form a core of
the Service Runtime Environment. Service interface will be naturally derived as the
result of mapping between Service life cycle model and the appropriate managing
components. The following sections enlighten the steps of the describe approach.

5.1 Service Life Cycle

As outlined in section 3.1 Services have much in common with mobile agents. The
grade of similarity is to be investigated now in detail. Based on particular differences
and similar properties it will be possible to derive the Service life cycle model from
the life cycle model of the conventional mobile agents. The comparison between the
definition of a mobile agent and the Service definition in section 2.1 can reveal the
grade of similarity best of all.

There are two standards for Mobile Agents technology. One of them originates
from the organisation called Foundation of Intelligent Physical Agents (FIFA). This
standard occupies with agent communication. The other existing standard is called
Mobile Agent System Interoperability Facility (MASIF) that originates from an
international organization Object Management Group, Inc. (OMG). This standard
specifies mainly the mobile agent management. According to MASIF specification
[34, 35] a mobile agent is:

• a computer program that acts autonomously on behalf of a person or organi-
zation.

• programmed in an interpreted language for portability.

• can be created, executed, transferred and terminated by an agent system.

• has its own thread of execution.

• not bound to the system where it begins execution.

• has ability to transport itself from one system in a network to another. When
an agent travels, its state and code are transported with it.

• agent names are required for identification, management operations, and lo-
cating.

39

5.1 Service Life Cycle

• agents are named by their authority, identity, and agent system type, whose
combination has a unique value.

Service Entities as defined in section 2.1 meet most of the enumerated issues.
However they differ in their autonomous property and migration capabilities.

Thus, the SRE hides from Services events and changes in the environment. Service
control mechanisms will be realised within the SRE as unidirectional, i.e. only the
functional components of the SRE will be able to initiate a Service migration process
or affect Service behaviour depending on the system monitoring data. Hence, Service
Entities have less decision freedom than mobile agents.

The Service migration process reminds more a code migration than a typical
mobile agent migration. In the simplified form the following scenario takes place.
Any time when a dynamic mobile network is entered by a new device D, Service
discovery is started at the this node. Assuming that there is a Service on some of
the nodes in the neighbourhood, e.g. at the node B, that D does not have and D
wants to utilise it. The SRE at node D sends a service transfer request to the node
B. In the next step the code of the Service arrives at the node D and is deployed
there on the fly. Hence, after the Service has migrated from one location to another,
there exist two identical instances of the same service in the network. They differ
from each other only by their state.

In general, there are two ways to load a Service into a particular SRE. A service
can be either installed manually or it can arrive from another node in the network.
In both cases the Service does not leave the node any more until the SRE removes its
code permanently. So, Service migration is only a Service cloning and transferring
the clone to another SRE. In particular situations1 it is also required to transfer
Services with their state. Even in these cases the Services are cloned. The copy
and the Service state are then moved to the new location . The original Service is
terminated but its code stays at the old location until the SRE deletes it.

Having outlined the significant differences between Mobile Agents and Service
Entities it is possible now to make the first step toward SRE’s design. Service Entity
life cycle is the main reference point that helps to extract the basic controlling
mechanisms of the SRE. Figure 5.1 describes the life cycle model of the Service
Entity. This model represents a graph with states and transitions between them.

The model contains three possible states in which a Service can exist: suspended,
activated and migrating. Each time when a Service is loaded it enters a supended
state. Within this state the Service does not perform any actions. An explicit call
of the SRE is required to move the Service into Activated state. Only after this call
the Service can run, perform actions and pursue its goals. Within the Migrating
state a Service is moving between two host systems.

The states in the model are connected with transition arrows. The creation tran-
sition defines Service initialization. Being in the activated state a Service can be

1These scenarios will be treated later in section 5.3.

40

5.2 Service Management

Figure 5.1: The Service Entity life cycle model

terminated or suspended. From the central suspended state a Service can be re-
sumed, terminated or moved to the other location. In the migrating state a Service
can only arrive at a new host system.

At the Service life cycle model it is possible to define two major SRE’s functional
components that will be separately treated in sections below. One of them provides
mechanisms for Service management and enables suspension, resumption, creation
and termination transitions. The other component defines rules for the Service
migration and enables transitions between migrating and suspended states.

5.2 Service Management

Service Management defines vital mechanisms for controlling Service life cycle. The
respective Service interface subset (in following called management interface) pro-
vides a control interface for hosting the Services at a particular Node, i.e. it conveys
particular SRE’s control directives to ServiceEntities and provides a possibility to
start, to finish a Service, as well as to affect Service behaviour during its execution.

Service life cycle starts with its creation. For every Service there is a class or a set
of procedures from which the SRE can instantiate a Service. The creation process
includes four steps:

• The SRE starts a new thread. The own thread should provide an executing
Service with flexibility and independence from other Service Entities. Besides

41

5.2 Service Management

this, Services running in parallel are easier to manage. That results in a better
fault-proneness property of the entire system2.

• The Service class is instantiated or in case of a procedural programming lan-
guage the instantiation procedures are executed.

• The loaded Service is registered within the SRE by its unique name.

• The Service is initialized within its own thread. The initialization is a com-
plex action and should be separately treated from the Service instantiation.
The advantage of the separation is the potential possibility to schedule Ser-
vice initialization. The scheduling routine can consider such parameters as
currently available resources. Service initialisation requires a definition of the
initialization directive.

After a particular Service had been initialized, it is in the suspended state (figure
5.1). The Service Entity is ready to be started. At the very beginning of the
execution the Service variables are assigned to default values. Nevertheless this
internal Service state is a fully-fledged one and can be even immediately serialized
for e.g. transferring to the other network node. Hence, there is no difference whether
a Service was executing and then has been hold on or is just newly initialized3.

To carry a Service over from the suspended into the activated state, management
interface requires a definition of a start directive. By calling this directive a Service
begins its activity and if required starts. The SRE admits more than one activated
Service at the same time. The SRE should take care of that the Services do not
perform contradictory actions. For example if one Service is asking for input from
the user, some other Service should not be allowed to close the active interaction
form and to show its own one.

The opposite directive to start which the SRE’s management component should
contain, is suspension. It returns the Service into suspended state. By calling this
directive a Service stops performing any actions, closes or holds on its threads, closes
communication sessions.

The Service life cycle can be finished any time, when the Service is either in the
activatedor in the suspended state. For both cases service management defines a
termination directive. By calling it, the Service frees up all the resources it had
allocated. The internal state of the Service is destroyed and cannot be restored
anymore.

2Of course threading always means a periodical switching of the execution context and thus an
additional overhead at the operation system level. On the other hand abandoning threading
utilization would just mean shifting this routing to the higher realisation level.

3A Service can be actually initialized with any internal state which is different from a default
one. When it makes sense will be explained later in this section.

42

5.3 Service Migration

Table 5.1: Service management directives

Directive Description
initialisation Service initialisation. Allocation of required

resources
start Makes a Service to start performing actions
suspension Carries over a Service into Suspended state
termination Finishes the Service life cycle. Frees up allo-

cated resources
getServiceState Returns the internal state of the Service
setServiceState Changes the internal state of the Service

The term Service internal state has been already several times mentioned in this
chapter without having been explained. This term addresses the current values of
particular Service variables. These variables are enclosed in a kind of data con-
tainer, which enables centralized management of the Service variables. More about
this container can be read in 6. The utilization of the special data container makes a
number of management operations, e.g. Service serialisation or Service initialisation,
more easy and transparent. The SRE’s management component defines two direc-
tives, which allow the manipulations with the Service internal state: getServiceState
and setServiceState

Hence, there are six basic directives, which are included in the service management
component and which define the respective management interface:

5.3 Service Migration

Service Migration is the mechanism, which the SRE generally uses to distribute
Services over the network. This functional component of the SRE specifies the way
how the migration procedure is to be carried out. The Service interface (called in
following migration interface) has to provide the SRE with the possibility to prepare
Services for this process and to start newly arrived Services.

The mobile agent technology defines two major types of agent migration: strong
and weak migration. During strong migration the agent process and its execution
context (execution state, program counter, etc.) are moved to the destination. In
systems supporting strong migration, the migration is often completely transparent
to the agent.

The weak migration principally differentiates between two terms: the agents state
and the agents code. In the case of weak migration, agent state refers to the internal

43

5.3 Service Migration

state and the private data of the agent. In weak migration, state and/or code can
be transferred. [36]

Discussing the general advantages and disadvantages of migration types is outside
the scope of the current work. The important issue about strong migration is that
it requires on the hosts exactly the same operating system, machine architectures
and programming language. For extremely heterogeneous networks this approach
does not suit. Hence a weak form of migration is the only adequate alternative for
the Services.

The most common case for the SRE is when a particular node wants to acquire
a Service, which is situated on some other node in the network. In this simple
situation if the Service is running, it continues to run and does not notice the
migration request at all. The SRE makes a copy of the source code and sends it to
the requesting node. Having arrived at the new location the Service is started in a
normal way and is initialized with the default state.

The other case is when the SRE initiates the Service migration process by its
own. There can be various reasons such as limited computing resources or a low
battery power. The migration component defines for this case a departure directive,
which allows to inform a certain Service that it will be moved to a new destination.
By calling this directive the Service prepares for the transfer. It’s state changes to
Suspended. If the Service source code is already present at the destination node, it is
not transferred once again. Only the Service last state is moved. Having arrived at
the new host, the Service is started and is initialized with the appropriate internal
state. In contrast to a normal Service start, there may be some tasks that the Service
has to execute on arrival, e.g. to inform other Service instances in the network about
the new location. To enable this, Migration component defines an arrival directive.

The case when the Service itself and not the SRE initiates the migration process
is not assumed by the current concept of the SRE. However, if the future application
scenarios require such Service behaviour, it will be possible only insignificantly to
modify the SRE. The main difficulty would be the maintenance of the unidirectional
nature of the management mechanisms, i.e. only the management entities can affect
Services’ behaviour and not vice versa. An elegant solution is realized in Java Aglets
system [37]. Aglets interact with their host over AgletContext object. This is a
special Aglet that can manipulate other aglets. Using AgletContext object Aglets
can create new Aglets or even get some Aglet back, if it migrated to the other host.

A similar approach could be applied to the SRE. The SRE could host a special
Service, e.g. MigrationService. If a particular Service is initialized and its description
indicates that this Service should be able to initiate migration itself, this Service
could get a reference to the MigrationService. If the mobile Service desires to leave
the host, it informs MigrationService, which interacts periodically with the SRE over
an extended Service interface. After that the common service migration process
is started, and the SRE prepares the common migration routine by calling the
departure directive.

44

5.3 Service Migration

Table 5.2: Service migration directives

Directive Description
departure Informs the Service that it will be moved to

a new destination.
arrival Called when the Service arrives at the new

location.

If the MigrationService is not presented at the host, it is an indication for the
Service, that the current node does not support Service migration. The advantage
of this approach is that a Service does not need to be involved into a complex
interaction with the SRE and is transferred over the network as if the migration
were initiated by the SRE.

In the conclusion of this section the directives of the migration component are
summarized in the table below.

45

6 Service Entity

After the introduction of the key functional components of the service runtime envi-
ronment (SRE), a suitable concept for Services is to be conceived. The SRE together
and the derived Service interface pose indirectly a number of constraints to the un-
derlying architecture of the Service Entity. SRE’s directives assume a particular
Service behaviour and prescribe a realisation of certain capabilities.

Basically, there are two major classes of Services that the SRE aims to support:
composed Services and non-composed Services. A non-composed Service can be
seen as a full-fledged application entity, which is executed at a single node. The
examples of non-composed Services are a text editor, instant messaging programs
like ICQ, network games like chess or cards.

Unlike non-composed Services, composed Services make use of other Services that
are present in the current network. In extreme cases such a Service can even possess
no own application logic, but completely rely on the Services it can find at the
neighbour nodes. Similar approaches exist in the Web Services research (web services
composition) [38]. The utilization of a composed Service is completely transparent
for the end-user. The user is not aware of the number of Services the composed
Service consists of. The Service usage differs insignificantly from the usage of a
non-composed Service. As an example consider a simple distributed Service, which
works like a walkie-talkie. The conversation between two users is based on sending
and receiving of little audio files. Assuming there is a speech recognition service
somewhere in the network. The walkie-talkie Service can be dynamically extended
by the speech recognition feature, so that afterwards each user has a history of a
conversation as a text file. From the user perspective the initial walkie-talkie Service
differs from the composed Service only by the absence of the additional option ”save
as text” in the settings of the Service.

Independently of the composition characteristics all Services can be divided into
those, which work without interaction with their users and those, which invoke user
interaction. The later group of services should implement appropriate mechanisms,
e.g. Graphical User Interface, Audio User Interface etc. which enable user input
and application output.

An important Service capability is to interact not only with the user, but also
with other Services. This enables development of a wide range of application based
on peer-to-peer communication.

In order to be able to distinguish between numerous Services, every Service must
have a unique description. The description provides details on what kind of Service it

46

6.1 Service Description

is (composed, non-composed), how it is to use, who is the author, security details etc.
It may also contain special information enabling construction of Service taxonomies
in the current dynamic network or even provide ontology description in order to
make possible personalized, context dependent Service usage.

Service state is also an important component of every Service entity.
In following the enumerated components a Service Entity is made up of will be

discussed in sections below.

6.1 Service Description

Service description is an essential component of every Service Entity. The need to
describe a Service is analogous with the requirement for labelling goods or products.
Product labels provide a summary description of the good to which it is attached.
This information is used to make a rational decision of purchasing and utilizing the
product.

The description of Services requires a high grade of accuracy. It is not enough
just to reflect functional properties of the Services, but it is also needed to describe
the complexity of the non-functional characteristics. A Service is not a function.
It is a function performed on behalf at a cost. The cost is not always some mone-
tary price; it is a whole collection of limitations. The non-functional properties of
Services include temporal and spatial availability, charging styles, settlement mod-
els, settlement contracts, Service quality, security, trust and ownership. That is why
such trend approaches as Universal Description, Discovery and Integration (UDDI),
the Web Services Description Language (WSDL) and the Web Services Flow Lan-
guage (WSFL) do not cover the entire scope. They lack the accuracy required to
compose Services dynamically1 [39]. Dynamic Service composition involves dynamic
Service search and dynamic composition phases. However, most of existing Service
description methods focus only on search or composition individually[40]. Generally
speaking, novel Service description models are in demand, which would allow the
description of functional and non-functional properties, dynamic Service search and
composition.

Service description is a large topic and is deserving of a separate research work.
That is why only core considerations and principles are discussed in following in order
to enlighten the nature of the Service description component. Since the definitoin of
a format for the Service description is not a goal of the current research, the draft,
which is proposed in this document, is based on principles, which would allow to
extend and to complete it any time. The guideline for the draft development is the
Service definition in section 2.1.

The set of Service properties to be outlined in the Service description is reasonable
to divide into two major subsets, static and dynamic properties. Static properties

1Dynamic Service composition is one of the desired features for the SRE

47

6.1 Service Description

are once set and do not need to be ever changed. The examples of static details
are Service name, manufacturer which released the Service, date of release, version
number, contact information, some static data, which enables secure usage of the
particular Service etc. These read-only properties can be useful for human as well
as for automated processes.

The dynamic part of the Service description can be seen as a kind of a whiteboard.
The content can be put in either by a Service itself or by the SRE. The examples of
dynamic data are

• Service classification. Distributed Service taxonomy simplifies the process of
Service discovery and Service delivery. The place that a particular Service has
in a taxonomy tree can vary from network to network. That is why this data
has to be changed dynamically. An interesting approach is introduced in [41].
This paper introduces distributed UDDI protocol which is adapted to mobile
ad hoc networks.

• Service ranking. The nodes in a mobile network can host Services, which
serve a similar goal. However these Services may differ in resource consume,
efficiency, functionalities etc. The righteous question is what Service to take?
An adequate Service ranking system could be an answer. An example of
a ranking system for MANETs is introduced in [42]. This approach uses
a selective benchmark strategy analyzing context, Service level and resource-
related information to make fast decisions for Service selection and contingency
reaction.

Static Service Description

One of the main goals of the Service description is to reflect the uniqueness of a
particular Service Entity. The ability to distinguish between two objects is the basic
principle, which enables the realization of almost all operations on Services. All the
related projects, which were introduced in chapter 4 prescribe specific properties
enabling clear object identification. The so called ID (AgletID, AgentID, ServiceID
and other derived terms) can be a unique string, a large number or it can consist of
several attributes such as the name of the Service provider, Service version number
etc. The ID parameter for Services is called ServiceID and represents just a unique
string.

IDs are frequently unhandy for a human and are used by the software internal
processes like Service communication, Service search, Service exchange etc. For the
human usage it is reasonable to define an alternative informative name. Service
Name property is not required to have a unique value. For the case, when there are
several Services in the network with the same name, the Service description contains
About property providing the user with additional information in a friendly format.

48

6.1 Service Description

The other Service properties, which may be of interest for the user are Vendor Name
and Address, Contact Phone and E-mail, Service Version and Date of Release.

While the enumerated properties describe Service exterior characteristics, the next
block of properties enlightens the Service from the technical perspective. As it was
previously mentioned there are two kinds of Services: simple and composed ones.
ServiceType property of a particular Service Entity indicates its type.

In case of a composition the current description draft proposes a simple way to
reflect this fact. PartialServiceIDs point in the description to the components a
particular Service is made up of. When a composed Service Entity is initialized
by the SRE, the task of the execution environment is to discover the composition
elements in the network and to provide the instantiated object with references to
them. This approach assumes that PartialServiceIDs are a priori set in the Service
description. Furthermore it is assumed in following that every composed Service in-
cludes the complete knowledge about the Sub-Services and implements logic for their
composition. The ideal scenario is, however, when the Services could get together
absolutely dynamically, i.e. PartialServiceID are found out and the composition
logic is generated by the SRE automatically. Dynamic Service composition would
require at this point from the Service description a complex representation ofService
capability, including semantic and syntactic details for the Service utilization. This
is a great challenge, which due to the complexity of the problem scope cannot be
treated within this work.

The next important issue, which should be treated within the Service description,
is the definition of the connection type a particular Service involves. The SRE has
a potential to support at least two kinds of Services: real-time and non-real time.
The type of required connection channels should be dealt as the ConnectionType
parameter in the Service description, so that the SRE can give to an initializing Ser-
vice Entity the references to the appropriate communication channels. The current
Description draft proposes two parameter values: RealTime and NotRealTime.

Resource management is another aspect, which should be reflected within the
Service description. There are system resources which require a particular accu-
racy utilizing them. These are resources which are present on systems as the only
object, e.g. video stream from the photo camera, keyboard etc. In order to avoid
conflicts while utilizing them, it is required to declare these resources in the Service
description. The SRE could manage then the usage of these critical resources.

An important issue about exclusive resources is the way how they are addressed.
Resource declaration has to be uniform for all the systems independently from the
real names of the resource objects. The same requirement concerns the way how
these resources are utilized. Hence, for every exclusive resource there must be a well
known name and a uniform interface, which enables the utilization of this resource
by every Service Entity at every SRE. For example, every Media Player object should
be referenced as AudioOutputDevice, hardware microphone as AudioInputDevice,
web browser (IE, Firefox, Opera etc.) as HtmlOutputDevice etc. The list with the

49

6.2 Service State

name mappings has to be managed by SRE.

Dynamic Service Description

Service properties, which may change either during Service execution or as a result of
a Service migration between networking nodes, are to be declared as dynamic data in
the description section. For example protection mechanisms of the SRE can use this
section to save digital signatures, to share the public key, to include some encrypted
data and so on. Besides this, the dynamic description may contain some statistics
data, which changes each time a Service Entity migrates to the other host. Service
popularity, Service classification, Service discovery and other important operations
on Service Entities may make use of the Service Description. Finally, Service State
can be also included into Service Description

6.2 Service State

The state of a Service is defined as a subset of Service variables, their values and
private data of the Service. In every execution step the Service variables can get
new values or the private data can be modified. This leads to the change of the
Service state.

There are several reasons for treating only the subset and not all the variables
and private data. Consider the example of a simple messenger Service. There is
a list of user contacts. Furthermore there is a list of only those contacts which
are currently online. Each conversation session is saved in a history file. Now the
instance of the messenger Service has to be moved to the other node in the network.
GetServiceState directive is called by the SRE is transferred to the new location
together with its state. It is obviously that the new node has different neighbours
than the previous one. Thus the list of online contacts can get invalid at the new
location and the contacts discovery process should be started on arrival in any case.
So it makes no sense to transfer the list of online contacts over the network. In
contrast the permanent contact list and the conversation history can be useful at
any node in the network.

Hence, the example above shows that only a certain subset of Service variables
and Service private data is of interest for the such operations on Service state as
Service migration. The definition of this subset is the task of particular Service
developers.

Another important issue is the management of the Service state. In order to
provide structural clearance and enable easy way to manipulate Service state, it is
reasonably to treat the state in a special data structure. This data structure should
stay as simple as possible and serve as a pool for important Service values.

50

6.3 Service Communication

The realisation for the similar concept is SUN’s JavaBeans for the Java 2 Plat-
form, Standard Edition (J2SE). JavaBeans are in fact ordinary Java classes which
hold constraints of the SUN’s JavaBeans API Specification. They have to obey cer-
tain rules for method naming, construction, and behaviour. Due to flexible design
JavaBeans are widely used and applied as containers for data transfer and represent
reusable components for construction of larger software architectures.

Avoiding implementation details in the current section, one should mphasize that
the Service state can be realised as an object which contains all the important data.
This object can be requested by Service Framework any time. Furthermore, Service
state object should contain methods that enable reading out every single value.
That is the way how Service Framework accesses Service data for e.g. its further
serializing and preparing for migration to the new location. Besides mechanisms for
reading out, the Service state object should implement methods for changing the
state data. These methods are used by the Service Entity to modify its state.

6.3 Service Communication

Service Communication is an important capability of Service Entities, enabling in-
teraction of Services with each other, even if they are situated on different nodes
or are accessible only through the Internet. According to the design of ACSF, the
framework which will be used to test the capabilities of the SRE, Services have a
direct access to the Network layer of the ACSF architecture. The Network layer is
responsible for opening and maintaining a communication channel. It includes logic
for apportioning of network resources between few Service Entities communicating
at the same time. The Network layer hides from application logic of a particular
Service any details regarding utilization of wireless technology (Bluetooth, IEEE
802.11 etc.), connection and reconnection details and all the other networking spe-
cific procedures.

The Network layer is accessible for the Services through the Network Interface.
Every time when a communication based Service is initialized, it gets a reference to
an object implementing this interface. Thus a Service acquires an ability to access
other Services in the network, to use Internet resources etc. The specification of
Network layer’s capabilities and the Network Interface is beyond the scope of the
current thesis. The goal of this section is to define an extension to the Service
interface, which enables Network layer to contact a particular Service Entity, to
deliver internal control directives and messages from other Nodes.

As it was previously mentioned in chapter 1, REST principles lie at the base of
the ACSF communication architecture. REST is the abbreviation for Representa-
tional State Transfer. This term and the architectural principles were introduced
in the dissertation of Roy Fielding [43]. The central conceptual point in REST is
resources which can be referred using URI. REST defines a collection of network

51

6.3 Service Communication

architecture principles which outline how resources are defined and addressed. Thus
it is prescribed, that the communication is client-server oriented and communication
state is not saved at the nodes. Using REST principles for ACSF is beneficial in
many aspects. Easy syntax and semantics make Service development and Service
execution simpler than the usage of RPC, RMI or other technologies for distributed
applications. The only issue, which is to be considered - the Service communication
should be reduced to a set of operations on resources according to a principle called
CRUD: create, read, update, delete.

Hence, Service interface should define four methods, which can be called by ACSF
Network layer in order to forward the request to the communicating Service Entity.
The call of these directives may be parameterized by additional arguments like
resource id, resource name, resource description etc. These parameters are then
included in the resource URI. As a response a requesting node can receive various
response codes, that indicate whether the operation could be successfully executed or
there were any errors. The main communicational methods which Service interface
should prescribe to Services are:

• CreateResource. The call of this directive creates as a rule a new object on
the Node. In some cases it may enforce the coping of an already existing
object. The possible request responses are success, access denied, operation is
not possible (if for example there is not enough memory), wrong URI format.

• ReadResource This directive requests a resource. The resource can be an object
like picture, xml file etc. or a result of some calculation. As a response the
asking node can get the resource itself or one of the response codes: access
denied, operation is not possible (for example because of an object size), wrong
URI format, modified (and date of modification), resource is missing.

• UpdateResource. This directive modifies an existing resource. In some rare
cases the call of this directive may initiate the execution of some computing
routine which changes the state of the asked node. In order to enable synchro-
nisation of operations on an object this directive may set or release a lock, so
that other Service Entities cannot temporary use current object. The possible
responses are success, access denied, operation is not possible (if for example
the object is locked by some processes), wrong URI format, resource is missing.

• DeleteResource. The directive is called when some resource should be de-
stroyed/released. That does not always mean that some object is perma-
nently deleted. It may be just temporary disabled and used again during
future Service execution. The same consideration is met if the resource is
some computational operation. It may be just hold on and continued again
later. DeleteResource may response with following codes: success, access de-
nied, operation is not possible, wrong URI format, resource is missing.

52

6.3 Service Communication

Communication based on these principles, as well as communication in mobile
ad hoc networks in general is a great challenge from the perspective of security
provision. The discussion of the approaches and the realisation of the particular
security mechanisms for ACSF and for the SRE are beyond the scope of the current
work. However, it is important briefly to introduce the main potential threats, in
order to be aware of the existing problems and to provide from the very beginning
the possibility of the appropriate security mechanisms integration in the system
architecture. To secure an ad hoc network, the following attributes are considered:
availability, confidentiality, integrity, authentication, and non-repudiation. These
attributes are detailed explained in [44]:

• Availability. Availability ensures the survivability of network services despite
denial of service attacks. A denial of service attack could be launched at any
layer of an ad hoc network. On the physical and media access control lay-
ers, an adversary could employ jamming to interfere with communication on
physical channels. On the network layer, an adversary could disrupt the rout-
ing protocol and disconnect the network. On the higher layers, an adversary
could bring down high-level services. One such target is the key management
service, an essential service for any security framework.

• Confidentiality. Confidentiality ensures that certain information is never dis-
closed to unauthorized entities. Network transmission of sensitive information,
such as passwords, banking PINs, requires confidentiality. Leakage of such in-
formation to unauthorized individuals could have bad consequences.

• Integrity. Integrity guarantees that a message being transferred is never cor-
rupted. A message could be corrupted because of benign failures, such as radio
propagation impairment, or because of malicious attacks on the network.

• Authentication. Authentication enables a node to ensure the identity of the
peer node it is communicating with. Without authentication, an adversary
could masquerade a node, thus gaining unauthorized access to resource and
sensitive information and interfering with the operation of other nodes.

• Non-repudiation. Non-repudiation ensures that the origin of a message cannot
deny having sent the message. Non-repudiation is useful for detection and
isolation of compromised nodes. When a node A receives an erroneous message
from a node B, non-repudiation allows A to accuse B using this message and
to convince other nodes that B is compromised.

In order to achieve these security goals, the SRE has to be extended by mecha-
nisms providing the desired secure communication. Additionally Service Description

53

6.3 Service Communication

can be used for describing the important security details, like public key, certificate,
digital signatures etc.2

Another important view on Service communication is the Quality of Service
(QoS)3. The United Nations Consultative Committee for International Telephony
and Telegraphy (CCITT) Recommendation E.800, has defined QoS as: ”The col-
lective effect of service performance which determines the degree of satisfaction of a
user of the service”. In dependence on particular application, the QoS constraints
can be: the available bandwidth, end-to-end delay, delay variation (jitter), probabil-
ity of packet loss, and so on. This kind of demand puts more pressure on the network
and the routing protocols which are used to support the communications[45].

In mobile ad hoc network, node mobility often results in frequent topology
changes, which represents a significant challenge when designing QoS routing
protocols. High node mobility can make QoS requirements unaccomplishable.
Consequently, it is required, that the network stays combinatorically stable in order
to achieve QoS support. This means that the changes in network topology must
be slow enough within a particular time window to allow the topology updates to
propagate successfully as required in the network [46].

QoS in ACSF and SRE in particular is motivated by aiming to support real time
Services as well as Services based on non-real time communication principles. The
current concept and the current implementation of ACSF do not differentiate yet
between QoS classes. Certain extensions are needed not only at the ACSF Network
layer to realize the desirable functionality, but also outside ACSF architecture at
the lower levels of the Network protocol stack. As for the SRE there exists already a
potential possibility for support of QoS. The Service Description that is available via
textitGetServiceDescription directive of the Management interface could contain the
indicator for connection types, which a particular Service needs for communication
purposes. Depending on this description, ACSF Network Interface can provide the
Service with appropriate facilities for data transfer.

The introduced extension of the Service interface is summarized in the table below.

2Service Description is detailed discussed in section 6.1
3Here: the terms Service as definded in 2.1 and Service in context of QoS differ in semantics

54

6.4 User Interaction

Table 6.1: User Interaction directives

Directive Description
CreateResource Creates a new resource.
ReadResource Requests a resource for reading.
UpdateResource Modifies an existing resource.
DeleteResource Removes or disables existing resource.

6.4 User Interaction

User interaction is an important consisting component of most Services. Not only
the representation of computing results is significant, but also the possibility of
giving in an input by the user during Service execution. Designing a concept of
a user interface (UI) for Services, two main considerations have to be taken into
account. The first aspect concerns the usability of the UI. UI must be obvious, easy
to use and if possible meet existing standards and utilize existing approaches, so
that the user feels familiar with offering UI. The other concern regards the technical
realization of UI. The challenging questions thereby are how to achieve the same or
at least the very similar look of the UI on different devices (platforms) and how to
make UI architecture as simple as possible and to separate it from the application
logic so that designers without special programming skills could develop UIs.

The most traditional way of interaction with the user in modern applications
is Graphical User Interface (GUI). GUIs are widely popular both in standalone
applications and in Word Wide Web. This user interaction mode is the most common
to the user and will be also applied for Services in this thesis.

As it was previously mentioned in this document, the implementaiton of Services
should not depend on the implementation of the SRE. This is a significant constraint
for utilization of powerful specific GUI libraries like Java SWING. On the other hand
the concept of the SRE is quite flexible and in the future can be extended by support
for such specific libraries, in order to enable programming of really sophisticated
Services like office applications.

At the current stage of development the most reasonable way to realize a reliable
and a quite powerful GUI is the utilization of universal technologies, which are
widely used in cross-platform programming praxis. The most appropriate solutions
for mobile devices seem to be Scalable Vector Graphics and graphical toolkit known
as Tk. Their advantages and the vision of how these technologies can be applied for
Services are discussed in the sections below.

SVG. Scalable Vector Graphics

Scalable Vector Graphics is an XML specification [47] and file format for describing
two-dimensional interactive and animated graphics. It is an open standard that grew

55

6.4 User Interaction

out of an effort of the World Wide Web Consortium. The main idea motivating SVG
was to create a generic document-oriented solution for graphics that can be adapted
to modern media. The SVG specification is not just a format for fancy graphics. It’s
a serious application designed by experts to match the most recent advancements
in 2D graphics and is almost as powerful as Java2D or GDI+ [48].

An important advantage of SGV is that all the graphic elements are described
as a text, which can be compressed. This is a significant consideration, because
small-sized files reduce the traffic and increase the communication productivity in
dynamic wireless networks.

Despite its name, SVG also supports raster images and text, and defines a generic
way to include raster graphics in a document either as external or inline files. Fur-
thermore W3C defines extensive dynamic capabilities of SVG. SVG drawings can be
animated by SMIL which is the recommendation of W3C or by a scripting language
like ECMAScript or JavaScript.

SVG in combination with scripting facilities represents a platform-neutral and
device-independent mechanism to define rich graphics based user interaction. The
vivid demonstration of this approach is SUN’s Lively project [49].

In addition to the SVG specification 1.1 W3C defines profiles for mobile devices.
Because each mobile device has different characteristics in terms of CPU speed,
memory size, and colour support, two profiles are defined. The first low-level profile,
SVG Tiny (SVGT) is suitable for highly restricted mobile devices like cell phones;
while the second profile, SVG (SVGB) is targeted for higher level mobile devices
like PDAs [50]. Thus SVG technology suits for any potential participant of a mobile
network.

User interaction based on SVG technology will be realized in following way. Ser-
vice Entities contain a front-end component which is responsible for generation of
complete or partial SVG documents. These documents can be accessed by the SRE
via particular method calls which are a part of the Service interface. For interaction
with Services a user needs only a web browser, which is installed on most of the
modern mobile devices.

SVG documents are displayed in the web browser and provide the user with
a possibility to do an input. ECMAScripts serve as control mechanisms which
make GUIs dynamic and do particular pre-processing tasks like evaluation of input
parameters. Every time when the user chooses a particular hyper link or submits
some data, the web browser makes a local request. This request is is forwarded to
the corresponding Service. The request is handled by the Service Entity. Afterwards
the Service returns a new SVG document, which is displayed in the web browser.

In particular situations the response must not be obligatory a complete SVG
documents. It’s enough to return a part of SVG document or just a parameter
value. This can be useful utilizing Ajax technology for retrieving the dynamic.
For this purpose Service interface should define appropriate directives, which would
support this approach.

56

6.4 User Interaction

Table 6.2: User Interaction directives

API directive Description
GetGui This directive prompts a Service to generate

a SVG or Tk GUI.
GetGuiElement Used to get only a particular GUI element.

Tk. Cross-platform Widget Toolkit

Tk is a toolkit for programming graphical user interfaces. It was designed for the
X window system used on UNIX systems, and it was ported to the Macintosh and
Windows environments in Tk 4.1. Especially Tk runs on Windows CE platform,
which is currently the most popular platform for handheld devices such as PDAs.

The basic operation entity in Tk is a widget. It is a window in a graphical user
interface that has a particular appearance and behaviour. The terms widget and
window are often used interchangeably. Widget types include buttons, scrollbars,
menus, and text windows. Tk also has a general-purpose drawing widget called
a canvas that can be used to create lighter-weight items such as lines, boxes, and
bitmaps.

Tk widgets build up a hierarchy. There exists a primary window, which can
contain several children windows that in their turn may be also nested ones. Tk
uses a naming scheme which helps to arrange windows on the display [51].

Due to its simplicity, Tk became a very popular cross-platform solution for realiza-
tion of the Graphical User Interfaces. A number of widely used scripting languages
such as Python, Perl, Lua etc. provide an interface for using Tk. This is an impor-
tant issue, that lets designing a concept for Services without taking into account the
possible programming languages that the Services can be implemented in.

Those Services that might offer a Tk GUI as alternative to SVG GUI will follow
the similar procedure. Calling a particular Service API directive for the very first
time, the front-end component of a Service prepares a Tk window and displays it to
the user. All the further interaction is completely controlled by the Service Entity,
which is responsible for showing and disabling GUI forms which are involved in the
interaction process. When the Service is stopped by the SRE, it has to finish all the
forms, that have been started by this Service.

In the conclusion of this section the extension of the Service interface is summa-
rized in the table below.

57

7 Proof Of Concept

This chapter enlightens the implementation activities of this thesis. The goal is
to prove the concept of the service runtime environment (SRE). The achieved the-
oretical considerations are to be converted now into a prototype implementation,
demonstrating the possibility of the technical realisation. This process will require
the discussion and the argued choice of particular implementation tools and tech-
nologies. The developed prototype may reveal the need of some conceptual improve-
ments, which will be summarized later in this document.

The implementation works comprise the realisation of functional components of
the service runtime environment (SRE) as well as the realisation of an end-user
service. Section 111 outlines implementation steps of the SRE. Section 222 deals
with implementation details of the Service.

7.1 Implementation of the Service Runtime
Environment

The functional components of the service runtime environment (SRE) as introduced
in chapter 5 are now to be implemented and integrated with ACSF.

ACSF is available as a Java implementation. That is why it is reasonable to choose
Java as a programming language for the SRE. At the current stage of development
ACSF defines a clear class structure, reflecting the architecture of ACSF as outlined
in section 2.5. Most of the basic functionalities are already implemented. However,
some of them are still in development. The integration of the SRE as a new com-
ponent requires an understanding of cooperation between existing components at
the technical level. The SRE has to meet prescribed conventional agreements and
rely on available infrastructural mechanisms in order to be compatible with other
components.

The java package for the SRE has got the name de.fhg.fokus.ascf.sre and has
been integrated into the existing ACSF package structure. This package contains
two sub-packages, each one for a functional component of the SRE:

• de.fhg.fokus.ascf.sre.servicemanagement - comprises mechanisms for Service
management

• de.fhg.fokus.ascf.sre.servicemigration - comprises mechanisms for Service mi-
gration

58

7.1 Implementation of the Service Runtime Environment

Each of the packages contains two main elements: a service interface and a syn-
chronous action message handler.

The Service interface prescribes a Service entity which methods it must implement
to be compliant with a particular functional component of the SRE. The Service in-
terfaces of the service management and service migration packages are implemented
by an abstract element, the so called AbstractService. The AbstractService was al-
ready predefined by ACSF and is the base of every Service. All Services extend
AbstractService, thus acquiring basic functionalities like getter and setter for Ser-
vice properties, inbound and outbound proxies for networking needs, access to the
description fields etc. The former state of the ACSF development assumed that
Services were made up of Java classes compressed into jar-files, which could be de-
ployed on-the-fly. However, the concept of Services as discussed in chapter 6 requires
Services to be independent from a particular implementation of the SRE. As it will
be shown in the next section Services can be realised in dynamic programming lan-
guages, i.e. as a set of scripts. This will provide the desired independence from
the underlying SRE implementation. How this issue is handled within SRE is also
discussed in section 7.2.

Synchronous action message handler is a kind of complementing element of a
particular functional component of the SRE. Its task is to handle synchronous net-
working requests and to activate the respective computing routine of the SRE. Ac-
tion message handlers are the obligatory elements required by Restac. Restac is the
communication framework, also developed by Fraunhofer FOKUS, which is included
in ACSF and enables the REST based communication between nodes.

The actual logic of the SRE is implemented in the ServiceRuntimeEnvironment
class. This class manages the list of Services. The control directives, which were
discussed in section 5, are realized as appropriate Java methods of this class. Al-
ternatively, the ServiceRuntimeEnvironment class could be split and its logic could
be distributed over two managing classes: ServiceManager and MigrationManager.
The advantage of this approach would be a better structural clearness. However,
it would require an unnecessary overhead for coordination and synchronization of
managers’ actions. That implies not only the longer response times, but also the
additional wastage of system resources. If the future system requirements insist on
this separation of roles, the restructure of the SRE will be a local task, which will not
affect the other ACSF components, which are placed outside the de.fhg.fokus.ascf.sre
package.

In following service management and service migration packages are discussed in
detail.

7.1.1 Service Management

de.fhg.fokus.ascf.sre.servicemanagement package is made up of two classes:
ServiceManagementInterface.java and ServiceManagementHTTPXSyn-

59

7.1 Implementation of the Service Runtime Environment

cActionMessageHandler.java.

ServiceManagementInterface

The ServiceManagementInterface interface prescribes a Service the implementation
of four methods as outlined in section 5.2: initService(), startService(), suspendSer-
vice(), terminateService() and getServiceState(). These methods except the last one
return no value and are called at different stages of the Service life cycle.

getServiceState() returns a string, representing comma separated key-value pairs.
The representation of the Service state as a string is necessary because of the special
manner of the data exchange between Java classes and Service scripts. The utilisa-
tion of Hashtables, Arrays and other data structures specific for Java would require
the explicit import of the appropriate libraries within the body of a script. This
would make the Service scripts dependent on the SRE they are executed in.

ServiceManagementHTTPXSyncActionMessageHandler

The prime task of ServiceManagementHTTPXSyncActionMessageHandler is to han-
dle web requests related to the Service management activities of the SRE. A special
HTTPX filter called UrlGroupFilter forwards the web requests referring particu-
lar resources to the ServiceManagementHTTPXSyncActionMessageHandler. This
handler extracts and verifies parameters and calls appropriate routines of the SRE.

The default response is the web page, which lists all the services accessible on the
current node and offers the possibilities to start, to suspend and to stop a particular
Service. In dependence on the chosen action SRE verifies, whether the respective
action can be executed. Afterwards the action is executed and the respective action
is performed on the Service. The scope of this master thesis does not comprise the
definition of access policies or treatment of security issues. In the current imple-
mentation every node can start, suspend or stop its own Service entities as well as
Service entities at any other node.

7.1.2 Service Migration

de.fhg.fokus.ascf.sre.servicemigration package is made up of two classes: ServiceM-
igrationInterface.java and ServiceMigrationHTTPXSyncActionMessage-
Handler.java.

ServiceMigrationInterface

The ServiceMigrationInterface requires the implementation of two methods: onDe-
parture() and onArival(). As discussed in section 5.2 these methods are called while
transferring a particular Service from one node to another. onDeparture() prepares a

60

7.2 Implementation of an End-user Service

Service for the migration process. onArrival() signalises a Service to execute certain
actions after arrival at a new location.

ServiceMigrationHTTPXSyncActionMessageHandler

The prime task of the ServiceManagementHTTPXSyncActionMessageHandler is to
handle synchronous web requests related to the Service migration activities of the
SRE. The default web interface allows initiating of a Service migration process for
every Service entity running on the current node. The obligatory request param-
eter is the IP of the destination host. After submission SRE tries to transfer a
particular Service to the new destination via ServiceMigrationHTTPXSyncAction-
MessageHandler. The same handler at the remote host can confirm transmission
or can decline it by sending BadRequest in dependence on the decision the remote
SRE meets.

The format of the messages, which could be exchanged between different SREs is
not discussed in the scope of this thesis. In later implementations the mechanisms
of the SRE could be extended. Based on a set of particular rules and policies
SREs could exchange details regarding hosted services to agree on the conditions
for service migration. Thus it could be possible to meet an agreement, whether the
Service code should be shipped with or without Service state as described in section
5.3. In the current implementation a Service is transferred completely with its state
and its byte code.

The utilization of the SRE Service migration capabilities by user interaction
demonstrates only the basic principles. However, as explained in section 5.3 the
migration process should be initiated in most cases not by the user, but automati-
cally as a reaction of the SRE to the changes in the environment.

7.2 Implementation of an End-user Service

In order to demonstrate the capabilities of the service runtime environment (SRE)
and to illustrate the concept of Services as outlined in chapter 6 an end-user Service
is to be implemented. This Service will be in following called RootExtractor. It is
a very simple application, which extracts a mathematical root of a maximal four
digits number. A graphical user interface of the RootExtractor Service comprises an
input field for a number, a button for calculating and an output field for displaying
the result of the calculation. Although the application logic of the RootExtractor
Service is simple, it demonstrates all the important issues. Thus this Service can be
initialized, started, suspended, terminated and moved to any other device in the net-
work. It is a stateful Service. Its state consists of the input variable. RootExtractor
uses a graphical user interface and supports interaction with users.

The development of an end-user Service assumes a discussion of following issues:

61

7.2 Implementation of an End-user Service

choice of a programming language, integration of a cross-platform Service with the
service runtime environment (SRE), realisation of the service description and the
service state, realisation of the GUI, implementation of the application logic. Each
issue is separately discussed in a respective section below.

7.2.1 Programming Language for the Service Entity

The technical realisation scheme for the Services must be completely free from con-
sidering the implementation details of the SRE (see chapter 6). In order to achieve
the desired cross-platform property, Service application logic must be realised in a
neutral programming language, which could be interpreted at any system. There is
a large family of programming languages, fulfilling this requirement. The so called
dynamic languages bring an advantage of enabling programs that can change their
code and logical structures at runtime, add variable types, module names, classes,
and functions during execution. These languages are frequently interpreted and gen-
erally check typing at runtime. The popularity of dynamic languages is growing more
and more. Major companies such as Microsoft and Sun Microsystems are support-
ing dynamic languages in their development platforms [52]. Due to the simplicity of
their constructions dynamic language are easy to learn and are especially attractive
for even not well experienced programmers. The trend of the dynamic programming
languages as the realisation means for the Services in the next generation networks
will surely held in the future. However, mobile networks may require the evolution
of modern dynamic languages regarding syntax and supported capabilities [53].

At the current moment the most popular dynamic languages are Python,
JavaScript, Lua, Groovy, Perl, PHP, TCL, Ruby and some others. All of them have
their advantages and shortcomings. Some of the languages are more convenient for
creating games, the other are better suited for making utilities or office applications.
All of the enumerated languages can be embedded into static languages like Java,
C#, C++ etc. That means, that the interpreters can be added to the classic
program as an external library, which enables execution of the script commands
within the running program. Thus there exists for example a Python interpreter as
IronPython for .NET, as Jython for Java etc.

However, there are still unsolved problems of porting the embedded interpreters
onto mobile devices. The integration of the interpreters into such runtime environ-
ments as .NET Compact Framework or J2ME is at this stage not possible. The
current realisations of interpreters are based on reflections, which are absent in the
compact versions of the virtual machines. There are commercial projects, initia-
tives and open-source communities which are intensively occupied with these topics.
However, currently offered solutions are neither ripe enough nor provide the satisfy-
ing results. This is a serious limitation that has to be accepted during the realisation
of the SRE.

As for the choice of a particular dynamic language for the RootExtractor Service,

62

7.2 Implementation of an End-user Service

this decision is not a fundamental one, because the interpreters can be easily ex-
changed or added to the SRE. Europe’s ECMA International and the International
Organization for Standardization has adopted in the ECMA-262 specification [54]
a general-purpose cross-platform scripting language called ECMAScript. This lan-
guage is widely used on the web, and is often referred to as JavaScript or JScript,
after the two primary dialects of the specification. JavaScript support is already
included in jdk 1.6. This is a direct advantage, because Java language was chosen
for the realisation of the SRE. Besides this, ECMAScript is recommended by ECMA
as a compliant language to SVG graphics format, which was previously discussed in
section 6.4. These facts motivate the choice of JavaScript as an instrument for the
realization of the RootExtractor Service.

7.2.2 Integration of the Service Entity into SRE

In order to provide the SRE with flexibility of adding new interpreters and to enable
a better and more structural control over scripting commands there has been made
a decision to implement a so called ServiceEntity wrapper. In the context of Java it
means a realisation of a ServiceEntity-wrapper class, which encapsulates functions
for reading the script, binding between scripting and java commands, managing
the Service state etc. This class has to implement interfaces, which enable Service
control as discussed in chapters 5 and 6. The wrapper class is to be seen as adapter,
which makes possible Service execution on every node. This class could be shipped
together with Service scripts.

The advantage of this approach is that the SRE operates with Service-objects
implemented in the same programming language. The SRE’s logic is isolated from
the details of the interpretation routine. Thus there may be hosted several Service
Entities, written in different dynamic languages and wrapped by different wrapper-
objects. Due to the common interface the SRE can handle these Service entities in
the same way.

7.2.3 Service State and Service Description

The next technical issue is the realisation of the Service State and the Service De-
scription. As it was previously explained in section 6.2 Service state as well as
Service Description have to stay cross platform, i.e. it must be possible to use them
in any software environment.

The current development of ACSF defines already a cross-platform format of
description for ACSF Nodes. This format allows both saving of text and binary data.
The description file is a sequence of key-value pairs with declaration of a value mime
type. The same format is acceptable for Services. However, the main shortcoming of
the format is the absence of a clear hierarchy of the saved data. On the other hand, if
the future application scenarios require the data hierarchy, the current format can be

63

7.2 Implementation of an End-user Service

easily extended. At the current stage a large advantage that definitely agues for the
utilization of the existing format, is its simplicity, which implies the simple parsing
and saving of computing resources on mobile devices. Besides this, the existence of
a uniform description format for nodes, Services and mediators contributes to the
clearness and transparency of the entire system architecture.

From the technical perspective Service state represents a set of important vari-
ables/Service properties which can be set during Service execution. In general these
key-value pairs can be managed in the same data structure and in the same for-
mat as Service description. Moreover, a combination of Service state and Service
description data in a common managing structure allows the reusing of the same
managing mechanisms. Exactly this approach has been realised on praxis.

The common description/state file can be modified during the Service execu-
tion. If the Service has to be moved to another node, this file is saved and added
to a Service Zip-archive, containing among others Service scripting files and the
ServiceScriptingWrapper-class. Afterward the package is transferred over the net-
work.

7.2.4 User Interaction

de.fhg.fokus.ascf.sre.userinteraction package is made up of two classes: UserIn-
teractionInterface.java and ServiceGuiHTTPXSyncActionMessageHan-
dler.java.

UserInteractionInterface

The UserInteractionInterface defines two methods getGui() and getGuiElement()
for supporting the interaction with the user. Both methods are parameterised by a
resourcePath string. In dependence on a parameter value and on the GUI generation
mode an appropriate GUI element is generated. The current implementation realises
only the support for default GUI mode, that is SVG/HTML. The utilisation of Tk
GUIs is more specific for certain application scenarios. That is why the interaction
capabilities of ACSF are demonstrated only by means of SVG/HTM technology.

ServiceGuiHTTPXSyncActionMessageHandler

The ServiceGuiHTTPXSyncActionMessageHandler handles the incoming web re-
quests. As it was discussed in section [6.3] Service entities should have a direct
access to the networking layer. The requests are forwarded by the networking layer
directly to a particular Service. The ServiceGuiHTTPXSyncActionMessageHandler
is actually to be seen as a complement element of the Service entity and not of the
SRE. The reason why this handler was placed into the sub-package of the SRE is the

64

7.2 Implementation of an End-user Service

potential possibility to extend the handler by capabilities to monitor and to inform
the SRE about the networking traffic generating by the Service entity.

7.2.5 Application Logic

The application logic of the RootExtractor-Service is realized as ECMA-scripts and
consists of two layers: backend layer and front-end layer. The backend layer com-
prises scripts, which are interpreted within the SRE. The scripts of the front-end
layer are included in GUI, i.e. SVG pages which are displayed by a web browser.

The backend layer of the RootExtractor service consists of only one ECMA
JavaScript. This script implements methods prescribed by the Service management,
service migration and user interaction interfaces. It also includes methods realising
the actual application logic of the Service, i.e. extraction of the mathematical root.

The front-end layer includes ECMA JavaScripts responsible for generating the
GUI elements and supporting simple user interactions without involving the backend
layer. Thus these scripts prove whether a particular string in the input field is a
number and whether it consists of maximal four digits. Besides this, the front-ends
scripts periodically synchronize the state of the GUI with the backend layer of the
Service.

65

8 Results and Evaluation

This chapter analyses and interprets the results achieved by this work. The software
components as developed are evaluated in the context of their ability to collaborate
with each other. The characteristics of the service runtime environment (SRE) such
as accuracy of realization, technological limitations and system’s shortcomings are
the focus of the analysis. Further, SRE’s autonomic communication properties are
reviewed.

8.1 Results

The SRE has been integrated into ACSF and has become a consistent component
of the ACSF Node. In general, every physical host can run more than one ACSF
instance. Each of the instances acquires an IP, which differs by the port number
from the other Nodes’ IPs. The possibility to start several ACSF instances on
a single hardware device facilitates only an approximate evaluation of the entire
system properties. Although the local instances build up an ad-hoc network as if
they were running on different devices, such values as co-existence of devices with
different computing capacities, latencies during node discovery process, behavior
of the system at different degrees of mobile intensity etc. cannot be accurately
established. However, these issues are of secondary importance since they are beyond
the scope of the current work (compare with section 1.2). The prime goals of the
evaluation are an estimation of the degree of accuracy for the realisation of the SRE,
i.e. deviation of implemented functionalities from the theoretical vision; estimation
of the SRE’s compliance with other system elements, investigation of limitations,
caused by implementation tools. These properties do not depend on the behavior
of the system under real conditions and can be determined during system tests at a
single device.

The collaboration of implemented components can be best of all evaluated in the
following scenario: starting the system, starting a Service, using the Service, initi-
ating Service migration, stopping the system. This scenario reflects the significant
functionalities, which were realised and can serve as the reference point for analysis
of the SRE’s properties.

66

8.1 Results

Starting the system

The SRE and its functional components, i.e. service management, service migra-
tion are initialized while ACSF is started. Local Services, which are situated on a
particular device in a special directory are automatically loaded into memory and
are carried over into suspended-state of the Service life cycle. Figure 8.1 shows the
default GUI after the system has been started.

Figure 8.1: ACSF default GUI

After the system start most of the SRE’s functionalities become accessible through
the web interface. Thus calling a default URI of the service management component,
a user gets the list of registered Services with indication of their current status
(running, suspended) and the possible actions: start, suspend, terminate. This is
shown at figure 8.2

The implementation is conforming so far the the Service life cycle as described in
chapter 6. However it could be reasonable in praxis to unite the start and the end
points of this graph. In the current implementation a once terminated Service is no
longer managed by the system. Although its code is still in the Service repository,
there is no possibility to reinitialize it. The because the Service thread including
Srvice object, Service name, Service Description etc. is destroyed in order to free
system resources. Service re-initialization would require managing of a separate
data-structure, which would comprise images of all Services which were unloaded.
The images could include only the most important descriptions of a Service, like
name, manufacturer, so that a user would still have an access to this data and could
restart the Service. The Service re-initialization routine can be included in the
later implementations of ACSF if this feature will be required by future application
scenarios.

Another issue, which can be improved in the future, concerns the generation of
the SRE’s management GUIs. Asynchronous message handlers, which are prescribed
by RESTAC framework act like Java-Servlets. The application logic is mixed with

67

8.1 Results

Figure 8.2: Service management. Default GUI

generation of HTML/SVG pages. The clear separation of application logic from
the representation is very important for ACSF. In contrast to desktop computers
mobile devices vary much in graphic capacities, i.e. extremely different display
resolutions, different colour support, different support for HTML elements etc. The
generation of GUIs suitable for all existing devices within handlers’ bodies is highly
disadvantageous.

The realisation of the RootExtractor Service has also revealed a necessity to mod-
ify the interface between ACSF Networking layer and the Service Entity. In the
current implementation ACSF requires a definition of a special web-filter, which
forwards requests to a particular Service. This filter requires a definition of every
resource, which is used by the Service. Thus images, audio files, flash animation,
video files, which are referenced in a SVG-page generated by a particular Service,
must be declared in the web-filter.

Starting a Service

After a Service has got a status running, it can be accessed under a unique URI.
This is shown in figure 8.3.

More than one Service can be executed in the SRE at the same time. It is any
time possible to switch between different running Services or to switch to manage-
ment interfaces. However, utilisation of the HTML/SVG technology for the Service
GUIs entails particular limitations. The realisation of the RootExtractor-Service
has demonstrated some of them. For instance a large problem is a synchronisation

68

8.1 Results

Figure 8.3: Service management. RootExtractor Service is started.

between front-end and backend layers of the Service entity. In order to make syn-
chronisation transparent for the user, front-end scripts should periodically exchange
data with backend script.

Starting Service Migration

Service Migration GUI allows initiating a transfer of every initialized ServiceEntity
to another Node. This GUI is shown in figure 8.4.

Figure 8.4: Service migration. Default GUI.

After arrival at a new location the Service gets the suspended status. The explicit
start request is expected from the user. This could be annoying for the user, who
would expect an automatic Service start. This usability aspect could be considered
in the later implementations of ACSF.

Figure 8.5: Service migration. Service was trasferred to the new location.

69

8.2 Evaluation

Stopping the system

The current state of ACSF development does not provide a possibility of correct
system stop by the user. An appropriate interface will be required in the later
ACSF implementations. However, already now SRE contains an event handler for
system stop signal. In this case the loaded Services are terminated and their threads
are destroyed.

Conclusion

The review of the results shows that the service management and service migration
components of the SRE have been realised according to the concept. Their collab-
oration reflects the objectives of conducted investigation in chapter 5. Apart from
certain suggestions and comments this part of the thesis has been successfully car-
ried out. The next section evaluates the autonomic properties of the implemented
SRE.

8.2 Evaluation

The previous section has enlightened the results of implementation. In the next
step the autonomic properties of the SRE as well as of the respective Services are
to be investigated. Firstly, it must be shown, that Services developed in accordance
with section 7.2 meet the requirements of section 3.3. Afterwards the functional
components of the SRE are to be analysed in the context of requirements as defined
in section 3.2.

8.2.1 Autonomic Properties of the Service Entity

The realisation schema for ACSF Services as introduced in section 7.2 characterises a
Service as an autonomous entity. Its application logic and internal processes cannot
be directly influenced by the SRE. Only the Service itself is aware of its internal
activities.

Self-configuration, self-optimisation and self-adaptation properties were not di-
rectly demonstrated by the RootExtractor-Service. The simple application logic
of this RootExtractor Service does not require any (re)configuration, optimisation
or adaptation activities. However, the respective methods could be implemented
within the Service script.

The Self-healing capabilities of the RootExtractor Service can be seen, while trans-
ferring the Service from one Node to another. The RootExtractor finishes its activity
on one ACSF node and then restores its state on another one. In general the self-
healing property of Services depends on the self-healing characteristics of the SRE.
If for example an ACSF node falls completely out, a particular SRE should assist

70

8.2 Evaluation

restoring the state of the Services. That means in particular, the SRE should pe-
riodically make backups of the states of its Services. The states could be saved on
hard drives or on other devices in the current network. Such mechanisms were not
discussed and were not realised in the current thesis. This problem area is beyond
the scope of this work and requires a separate detailed investigation.

The self-protection property of Services as briefly introduced in section 6.3 is op-
tional. The main protection mechanisms should be integrated into the SRE. How-
ever, the application logic of a particular Service could implement some additional
protection methods. For example some distributed Services could require a login
name and a password for utilising its functionalities. The application scenario of
the RootExtractor Service does not require such mechanisms.

In contrast to the previous self- * properties, which the RootExtractor Service
demonstrates, the self-implementation property cannot be evaluated in the current
implementation of the SRE. This property is relevant for the composed Services. The
SRE requires service discovery mechanisms to support the composed Services. That
means in particular that the SRE is not able to find Services a certain composed
Service is made up of. Consequently the SRE cannot provide a composed Service
with the references to respective Services in the network. The conceptualisation and
realisation of the mechanisms supporting Service discovery were beyond the scope
of this work.

Hence, it has been shown, that non-composed Services developed as discussed in
section 7.2 have all the required characteristics of autonomic entities. Composed
Services require the implementation of the Service discovery. Dynamic Service dis-
covery is a necessary prerequisite for the realisation of the self-implementation prop-
erty, enabling Service composition transparently for the end-user.

8.2.2 Autonomic Properties of the Service Runtime
Environment

The SRE is conceptualised in this work as a part of a distributed system. The
concept assumes an active interaction between SREs on different network nodes
based on principles of autonomic communication (AC). Although the discussion of
the global interactions between SREs was not the part of this thesis, it is to be
shown in following, that the current implementation of the SRE does not entail at
least any limitations for fulfilling the requirements defined in section 3.2. Moreover,
it is to be shown that the implemented functional components of the SRE could
contribute to the adaptive behaviour of the network nodes. That means that the
SRE in its current implementation could project the changes in the global context
to the context of the hosted Service.

In order to evaluate these two issues the implemented functional components of
the SRE should be analysed in the context of requirements defined in section 3.2.

71

8.2 Evaluation

In following each list item describes how the fulfilling of a particular requirement is
supported by the current implementation of the SRE.

• Self-awareness. A particular SRE manages a list of Services and has a direct
access to their descriptions. This is a prerequisite for realising mechanisms
facilitating the exchange of Service details between SREs. Exchanging such
information a particular SRE can be aware of the state of the neighbour net-
work nodes.

• Self-configuration and Self-optimisation. The (re)configuration and optimisa-
tion of a particular SRE involves the configuration and optimisation of running
Services. The functional components of the SRE can initiate these processes
on Services by calling the setServiceState control directive.

• Self-healing. The self-healing mechanisms of the SRE could make use of the
setServiceState directive. In case of a system crash the SRE could use this
method to set a particular Service to the state before system crash.

• Self-protection. The current implementation of the SRE does not handle pro-
tection issues. That is why the mechanisms enabling a safe communication,
service exchange and service execution can be integrated within the SRE as a
completely new component.

• Self-adaption. The functional components of the SRE provide a fundament
for the realisation of the self-adaption property. Every Service can be started,
hold on, terminated, reconfigured or moved to another Node. These actions
can be performed by the SRE in dependence on the global context.

Hence, the review of the functional components of the SRE in the context of the
requirements in section 3.2 reveals that the SRE can be extended by the mechanisms
enabling its autonomic properties in the global context. It was also shown, that the
implemented control mechanisms can contribute to the adaptive behaviour of the
SRE as a part of the distributed system.

8.2.3 Conclusion

The evaluation of the results has confirmed, that the implemented functional compo-
nents of the SRE as well as the implemented end-user Service fulfil the requirements
defined in sections 3.2 and 3.3. That means, that the concepts of the SRE and re-
spective Services as outlined in chapters 5 and 6 could be successfully realised. The
implementation has revealed a number of technical issues, which should be improved
in later development. However, these constraints are not entailed by the conceptual
shortcomings.

72

9 Conclusion

This chapter summarizes the current work, it emphasises the main results and pro-
vides an outlook on possible future work. Section 9.1 provides an overview of the
findings and key achievements of the thesis and their contribution of knowledge.
Further, it is critically assessed whether the results of this work meet the initial
goals as set out. Section 9.2 gives an outlook on possible future research activities
and outlines the further development of the SRE.

9.1 Result Summary

This thesis has proposed an innovative concept of a service runtime environment for
next-generation networks. The review of literature revealed that the proposed SRE
and respective service concepts are a novel solution in the domain of service archi-
tectures for dynamic wireless networks. The existing approaches assume services to
be intelligent and to implement complex methods for adaptivity and self-awareness.
The SRE concept introduced in this thesis facilitates light-weight but at the same
time adaptive and self-aware services.

Based on a literature review and based on an analysis of the paradigm of auto-
nomic communication the following conceptual requirements of the service runtime
environment have been identified:

• The SRE is foremost a container for services. It provides methods and mech-
anisms for initializing, starting, suspending and terminating services.

• The SRE supports service migration. Weak migration is argued to be the most
suitable migration form for the services hosted by the SRE. Service migration
can be initiated either by user interaction or by the SRE.

• The SRE provides mechanisms for the interpretation of changes and events
within the network.

• The SRE can adapt its behaviour to evolving situations. In particular, SRE
can enforce changes of the service execution context. This enables services
to adapt their behaviour to the new context. As a result the SRE adapts its
behaviour.

73

9.1 Result Summary

• The SRE can be implemented for various software and hardware environments
that comply with the requirements as stated in chapter 3.2, irrespective of their
particular operating system and hardware configuration. .

Necessary characteristics of adaptive and self-aware services as assumed for the
SRE can be summarized as follows:

• Services do not need to be aware of the state and the available resources of
the mobile device or the network environment. These changes are monitored
by sensors and handled by the SRE.

• Services for the SRE are light-weight , they only contain the application logic.

• Services can be accessed by the SRE to control service behaviour using a
common interface.

• Services as handled by the SRE act fully autonomously. It is not possible for
the SRE to access internal processes of a particular service.

• Services can be transferred from one network node to another triggered by the
SRE.

• Services are aware of the execution environment as provided by the SRE and
generally allow the SRE adapting their behaviour.

• The implementation of Services does not depend on the actual implementation
of the SRE.

The functional components of the SRE enabling service management and service
migration were implemented as proof-of-concept. Since the ACSF framework is im-
plemented in Java and the SRE had to be integrated, the SRE was also implemented
in the Java programming language. The SRE as realised facilitates the following:

• Interpretation and execution of services written in ECMA JavaScript

• Dynamic integration of additional interpreters

• Initializing, starting, suspending and terminating services

• Exchanging services between networking nodes. Based on the user interaction
the SRE can terminate a particular service and transfer it to the other location.
At the new location the service arrives with its state and its execution can be
continued.

An end-user service was implemented to demonstrate the capabilities of the SRE.
This service is characterized by following properties:

74

9.2 Outlook

• The Service is realised as an ECMA JavaScript

• The service generates SVG-GUIs

• The service uses web-browser for display and user interaction

The interpretation and evaluation of the results as achieved confirmed that the
proposed SRE concept is beneficial for the rapid development of sophisticated ser-
vices. Although, not all theoretical considerations could be fully followed up, this
work is considered to provide a meaningful contribution towards the development
of a comprehensive and innovative service runtime environment for self-organising
dynamic networks.

9.2 Outlook

Since the successful implementation of the service runtime environment as detailed
in this thesis is considered a meaningful contribution to service architectures for
the dynamic mobile networks in general, the current approach seems worth further
developing. The SRE will be further developed and extended within the ACSF
project. The next step in the further development could be the conceptualisation
of the mechanisms enabling interpretation of changes within the mobile devices
or the network environment. In particular it assumes the definition of an API
facilitating the monitoring of the environment. The appropriate rules and formats
for data exchange between framework sensors observing the environment and the
SRE where the data is interpreted, need to be refined. The methods and mechanisms
for interpretation should be flexible enough to cover predictable as well as non-
predictable situations.

The other important task is a definition of suitable communication protocols
between the service runtime environments at different network nodes. The SREs
should be able to exchange details regarding hosted services to agree on the condi-
tions for service migration and to provide secure service distribution.

As mentioned in section 6.3it is of vital importance to integrate the support
for real-time services in the future. It will open new perspectives for the rapid
development of sophisticated services based on video or audio streaming such as IP
telephony in the Internet. The utilisation and integration of QoS mechanisms is
considered to be one of the highly desired features of the future SRE as part of the
ACSF.

The objectives of this thesis are of considerable interest to the author of this

75

9.2 Outlook

thesis. The achieved results give motivation to further occupy within this research
area. The concept of light-weight and adaptive services in mobile environments, as
introduced in this work is expected to have a large potential in solving a number
of the remaining critical issues of self-organising dynamic networks. Initially, the
results of this work will be applied to the domain of culture and tourism, where light-
weight services dynamically distributed in mesh networks can be used for indoor
navigation and for providing visitors with multimedia content in museums.

76

Index

AC, 9
ACSF, 10, 20
Aglets, 29
Autonomic Communication, 9
autonomic communication, 18
autonomic computing, 18
Autonomous Communication Service

Framework, 10

environment, 15

MANET, 14
Mesh networks, 15
mesh networks, 14
migration interface, 43
mobile ad-hoc networks, 9

self-* properties, 17
Service, 13, 46
service, 11
Service description, 47
Service Entity, 13
Service life cycle, 13, 39
Service Migration, 43
Service Runtime Environment, 13, 17
service runtime environment, 10, 38
Service state, 50
SRE, 10, 13

User interaction, 55

WSN, 14

77

Attachment

Dieser Arbeit liegt eine CD-ROM bei, welche eine digitale Version der vorliegenden
Arbeit und den Quelltext der in der Arbeit umgesetzten Komponenten enthält.

Kontaktinformation

Ilya Gorodnyanskiy
Email: igorod@gmx.de
Tel: +49 1742151474
Web: http://i-gorod.org

78

Bibliography

[1] Hassim Mohamed Yunos, Jerry Zeyu Gao, and Simon Shim. Wireless advertis-
ings challenges and opportunities. Computer, 36(5):30–37, 2003.

[2] Oriana Riva, Tamer Nadeem, Cristian Borcea, and Liviu Iftode. Context-
aware migratory services in ad hoc networks. IEEE Transactions on Mobile
Computing, 6(12):1313–1328, 2007.

[3] Kevin Curran, Maurice D. Mulvenna, Chris D. Nugent, and Alex Galis. Chal-
lenges and research directions in autonomic communications. IJIPT, 2(1):3–17,
2007.

[4] Ioannis Stavrakakis and Michael Smirnov, editors. Autonomic Communication,
Second International IFIP Workshop, WAC 2005, Athens, Greece, October 2-
5, 2005, Revised Selected Papers, volume 3854 of Lecture Notes in Computer
Science. Springer, 2006.

[5] Realman ’06: Proceedings of the 2nd international workshop on multi-hop ad
hoc networks: from theory to reality, 2006. General Chair-Marco Conti and
Program Chair-Jon Crowcroft and Program Chair-Andrea Passarella.

[6] Terranet. http://www.terranet.se/.

[7] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol
Gelenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and
Franco Zambonelli. A survey of autonomic communications. ACM Trans.
Auton. Adapt. Syst., 1(2):223–259, 2006.

[8] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[9] Francesco De Mola and Raffaele Quitadamo. An agent model for future auto-
nomic communications. In WOA, 2006.

[10] Autonomic computing. the 8 elements. http://www.research.ibm.com/

autonomic/overview/elements.html.

[11] Laurent Lefèvre. Heavy and lightweight dynamic network services : challenges
and experiments for designing intelligent solutions in evolvable next generation

79

 http://www.terranet.se/
http://www.research.ibm.com/autonomic/overview/elements.html
http://www.research.ibm.com/autonomic/overview/elements.html

Bibliography

networks. In IEEE Society, editor, Workshop on Autonomic Communication
for Evolvable Next Generation Networks - The 7th International Symposium
on Autonomous Decentralized Systems, pages 738–743, Chengdu, Jiuzhaigou,
China, April 2005. ISBN : 0-7803-8963-8.

[12] Monique Calisti, Sven van der Meer, and John Strassner. Advanced Autonomic
Networking and Communication (Whitestein Series in Software Agent Tech-
nologies and Autonomic Computing). Birkhäuser Basel, 2008.

[13] V. Simon, L. Bacsardi, S. Szabo, and D. Miorandi. Bionets: a new vision of
opportunistic networks. proceedings of ieee wrecom. 2007.

[14] Sven van der Meer, William Donnelly, John Strassner, Brendan Jennings, and
Mı́cheál Ó Foghlú. Emerging principles of autonomic network management.
In IEEE Society, editor, Multicon Lecture Notes: in Proc. of 1st IEEE Inter-
national Workshop on Modelling Autonomic Communications Environments,
pages 29–48, Dublin, Ireland, October 25-26 2006. ISBN 3-930736-05-5.

[15] Arvind Gopalan, Sajid Saleem, Matthias Martin, and Daniel Andresen. Baglets:
Adding hierarchical scheduling to aglets. In HPDC ’99: Proceedings of the 8th
IEEE International Symposium on High Performance Distributed Computing,
page 38, Washington, DC, USA, 1999. IEEE Computer Society.

[16] D. B. Lange and D. T. Chang. Programming mobile agents in java. Technical
report, IBM, September 1997.

[17] Robert S. Gray. Agent tcl: A flexible and secure mobile-agent system. Technical
report, 1998.

[18] Holger Peine and Torsten Stolpmann. The architecture of the ara platform for
mobile agents. In MA ’97: Proceedings of the First International Workshop on
Mobile Agents, pages 50–61, London, UK, 1997. Springer-Verlag.

[19] C. Baumer, M. Breugst, S. Choy, and T. Magedanz. Grasshopper: a universal
agent platform based on omg masif and fipa standards, 2000.

[20] IKV++. Grasshopper mobile agent system. http://java.sun.com/products/
servlet/index.jsp, 2003.

[21] N Migas, W. J. Buchanan, and K. McArtney. Migration of mobile agents in
ad-hoc, wireless networks. ecbs, 00:530, 2004.

[22] Nobuo Kawaguchi, Katsuhiko Toyama, and Yasuyoshi Inagaki. Magnet: ad hoc
network system based on mobile agents. Computer Communications, 23(8):761–
768, 2000.

80

http://java.sun.com/products/servlet/index.jsp
http://java.sun.com/products/servlet/index.jsp

Bibliography

[23] James E. White. Telescript technology: mobile agent. pages 460–493, 1999.

[24] Hairong Qi. Sensit: Mobile agent framework for collaborative signal and infor-
mation processing. http://aicip.ece.utk.edu/research/maf/manual.pdf,
May 2001.

[25] Jxta java standard edition v2.5: Programmers guide. https:

//jxta-guide.dev.java.net/source/browse/*checkout*/jxta-guide/

trunk/src/guide_v2.5/JXSE_ProgGuide_v2.5_draft.pdf.

[26] Mario Bisignano, Giuseppe Di Modica, and Orazio Tomarchio. Jmobipeer: A
middleware for mobile peer-to-peer computing in manets. In ICDCSW ’05:
Proceedings of the First International Workshop on Mobility in Peer-to-Peer
Systems (MPPS) (ICDCSW’05), pages 785–791, Washington, DC, USA, 2005.
IEEE Computer Society.

[27] N. Algoumine, S. Balasubramaniam, D. Botvich, J. Strassner, E. Lehtihet, and
W. Donnelly. Challenges for autonomic network management. In In 1st confer-
ence on Modelling Autonomic Communication Environment (MACE), Dublin,
Irland, 2006.

[28] Michael Wang and Tatsuya Suda. The bio-networking architecture: A biologi-
cally inspired approach to the design of scalable, adaptive, and survivable/avail-
able network applications. In SAINT ’01: Proceedings of the 2001 Symposium
on Applications and the Internet (SAINT 2001), page 43, Washington, DC,
USA, 2001. IEEE Computer Society.

[29] Christophe Jelger, Christian F. Tschudin, Stefan Schmid, and Guy Leduc. Basic
abstractions for an autonomic network architecture. In WOWMOM, pages 1–6,
2007.

[30] Ana project. http://www.ana-project.org.

[31] Jing Su, James Scott, Pan Hui, Eben Upton, Meng How Lim, Christophe Diot,
Jon Crowcroft, Ashvin Goel, and Eyal de Lara. Haggle: Clean-slate networking
for mobile devices. Technical Report UCAM-CL-TR-680, University of Cam-
bridge, Computer Laboratory, January 2007.

[32] Haggle project. http://www.haggleproject.org/.

[33] Edzard Höfig, Björn Wüst, Borbàla Katalin Benkò, Antonietta Mannella,
Marco Mamei, and Elisabetta Di Nitto. On concepts for autonomic commu-
nication elements. in: Proceedings of the first ieee international workshop on
modelling autonomic communications environments (mace). pages 49–59. Mul-
ticon verlag, 2006.

81

http://aicip.ece.utk.edu/research/maf/manual.pdf
 https://jxta-guide.dev.java.net/source/browse/*checkout*/jxta-guide/trunk/src/guide_v2.5/JXSE_ProgGuide_v2.5_draft.pdf
 https://jxta-guide.dev.java.net/source/browse/*checkout*/jxta-guide/trunk/src/guide_v2.5/JXSE_ProgGuide_v2.5_draft.pdf
 https://jxta-guide.dev.java.net/source/browse/*checkout*/jxta-guide/trunk/src/guide_v2.5/JXSE_ProgGuide_v2.5_draft.pdf
 http://www.ana-project.org
 http://www.haggleproject.org/

Bibliography

[34] OMG. Mobile agent facility specification. http://www.omg.org/docs/formal/
00-01-02.pdf.

[35] Dejan Milojičić, Markus Breugst, Ingo Busse, John Campbell, Stefan Covaci,
Barry Friedman, Kazuya Kosaka, Danny Lange, Kouichi Ono, Mitsuru Oshima,
Cynthia Tham, Sankar Virdhagriswaran, and Jim White. Masif, the omg mobile
agent system interoperability facility. pages 628–641, 1999.

[36] B. J. Overeinder, F. M. T. Brazier, and D. R. A. de Groot. Cross-platform
generative agent migration. In Proceedings of the Fourth European Symposium
on Intelligent Technologies, Hybrid Systems and their implementation on Smart
Adaptive Systems, pages 356–363, June 2004. EUNITE 2004, June 10-12, 2004,
Aachen, Germany, http://www.eunite.org.

[37] Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono. Aglets Specification 1.1.
IBM, 1998.

[38] Nikola Milanovic and Miroslaw Malek. Current solutions for web service com-
position. IEEE Internet Computing, 8(6):51–59, 2004.

[39] Justin O’Sullivan, David Edmond, and Arthur Ter Hofstede. What’s in a ser-
vice? towards accurate description of non-functional service properties. Distrib.
Parallel Databases, 12(2-3):117–133, 2002.

[40] Xiaoquin Xie and Kaiyun Chen. Uniform service description with semantics
for search and composition. In IMSCCS ’06: Proceedings of the First Interna-
tional Multi-Symposiums on Computer and Computational Sciences - Volume
2 (IMSCCS’06), pages 387–390, Washington, DC, USA, 2006. IEEE Computer
Society.

[41] Piergiorgio Cremonese and Veronica Vanni. Uddi4m: Uddi in mobile ad hoc
network. In WONS ’05: Proceedings of the Second Annual Conference on Wire-
less On-demand Network Systems and Services, pages 26–31, Washington, DC,
USA, 2005. IEEE Computer Society.

[42] Guenter Prochart, Reinhold Weiss, Reiner Schmid, and Gerald Kaefer. Support
for fast service selection in mobile ad hoc networks using a selective benchmark
strategy. 2007.

[43] Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[44] Lidong Zhou and Zygmunt J. Haas. Securing ad hoc networks. IEEE Network,
13(6):24–30, 1999.

82

 http://www.omg.org/docs/formal/00-01-02.pdf
 http://www.omg.org/docs/formal/00-01-02.pdf

Bibliography

[45] Sofiene Jelassi and Habib Youssef. Adaptive playback algorithm for interactive
audio streaming over wireless ad-hoc networks. In IWCMC ’06: Proceedings
of the 2006 international conference on Wireless communications and mobile
computing, pages 218–226, New York, NY, USA, 2006. ACM.

[46] Imad Jawhar and Jie Wu. Qos support in tdma-based mobile ad hoc networks.
J. Comput. Sci. Technol., 20(6):797–810, 2005.

[47] W3C. Scalable vector graphics (svg) 1.1 specification. http://www.w3.org/

TR/SVG, 2003.

[48] Antoine Quint. Scalable vector graphics. IEEE Multimedia, 10(3):99–102, jul–
sep 2003.

[49] Sun lively project. http://research.sun.com/projects/lively/.

[50] W3C. Mobile svg profiles: Svg tiny and svg basic. http://www.w3c.org/TR/

SVGMobile, 2003.

[51] Welch, Ken Jones, and Jeffrey Hobbs. Practical Programming in Tcl & Tk.
Prentice Hall Professional Technical Reference, 2003.

[52] Linda Dailey Paulson. Developers shift to dynamic programming languages.
Computer, 40(2):12–15, 2007.

[53] J.-L. Bakker and R. Jain. Next Generation Service Creation Using XML Script-
ing Languages, volume 4. 2002.

[54] ECMA International. Standard ECMA-262. 1999.

83

http://www.w3.org/TR/SVG
http://www.w3.org/TR/SVG
http://research.sun.com/projects/lively/
http://www.w3c.org/TR/SVGMobile
http://www.w3c.org/TR/SVGMobile

	Tabel of Contents
	Table of Figures
	Table of Tables
	Introduction
	Motivation
	Goals
	Structure of the Document

	Setting the Scene
	Service Definition
	Self Organizing Wireless Networks
	Properties of the Environment
	Autonomic Communication Principles
	Autonomous Communication Service Framework

	Requirements Definition for System Architecture
	Towards a Model for Open Service Runtime Environment
	Requirements of Service Runtime Environment
	Requirements of Service Entity

	State of the Art
	Mobile Agent Systems
	Peer-to-Peer Systems
	Autonomic Communication Systems
	Summary

	Service Runtime Environment
	Service Life Cycle
	Service Management
	Service Migration

	Service Entity
	Service Description
	Service State
	Service Communication
	User Interaction

	Proof Of Concept
	Implementation of the Service Runtime Environment
	Service Management
	Service Migration

	Implementation of an End-user Service
	Programming Language for the Service Entity
	Integration of the Service Entity into SRE
	Service State and Service Description
	User Interaction
	Application Logic

	Results and Evaluation
	Results
	Evaluation
	Autonomic Properties of the Service Entity
	Autonomic Properties of the Service Runtime Environment
	Conclusion

	Conclusion
	Result Summary
	Outlook

	Index
	Attachment
	Bibliography

